CombineKey()是最常用的基于键进行聚合的函数,大多数基于键聚合的函数都是用它实现的。和aggregate()一样,CombineKey()可以让用户返回与输入数据的类型不同的返回值。要理解CombineKey()需要先理解它在数据处理时是如何处理每个元素的。由于CombineKey()会遍历分区中的所有元素,因此每个元素的键要么还没有遇到,要么就是和之前的额某个元素的键相同。

  如果遇到的是一个新元素,CombineKey()会使用一个叫做createCombiner()的函数来创建那个键对应的累加器的初始值,需要注意的是,这一过程会在每个分区中第一次出现各个键时发生,而不是在整个RDD中第一次出现时发生。

  如果这是一个在处理当前分区之前已经遇到的键,它会使用mergeValue()方法将该键的累加器对应的值与这个新的值进行合并。

  由于每个分区都是独立处理的,因此对于同一个键可以有多个累加器。如果有两个或者更多的分区都有对应同一个键的累加器,就需要使用用户提供的mergeCombiners()方法将各个分区的结果进行合并。

  如果已知数据在进行combineByKey() 时无法从map 端聚合中获益的话,可以禁用它。例如,由于聚合函数(追加到一个队列)无法在map 端聚合时节约任何空间,groupByKey() 就把它禁用了。如果希望禁用map 端组合,就需要指定分区方式。就目前而言,你可以通过传递rdd.partitioner 来直接使用源RDD 的分区方式。

  combineByKey() 有多个参数分别对应聚合操作的各个阶段,因而非常适合用来解释聚合操作各个阶段的功划分。为了更好地演示combineByKey() 是如何工作的,下面来看看如何计算各键对应的平均值:

在Python 中使用combineByKey() 求每个键对应的平均值
sumCount = nums.combineByKey((lambda x: (x,1)),
(lambda x, y: (x[0] + y, x[1] + 1)),
(lambda x, y: (x[0] + y[0], x[1] + y[1])))
sumCount.map(lambda key, xy: (key, xy[0]/xy[1])).collectAsMap()

  

在Scala 中使用combineByKey() 求每个键对应的平均值
val result = input.combineByKey(
(v) => (v, 1),
(acc: (Int, Int), v) => (acc._1 + v, acc._2 + 1),
(acc1: (Int, Int), acc2: (Int, Int)) => (acc1._1 + acc2._1, acc1._2 + acc2._2)
).map{ case (key, value) => (key, value._1 / value._2.toFloat) }
result.collectAsMap().map(println(_))

  

在Java 中使用combineByKey() 求每个键对应的平均值
public static class AvgCount implements Serializable {
public AvgCount(int total, int num) { total_ = total; num_ = num; }
public int total_;
public int num_;
public float avg() { returntotal_/(float)num_; }
}
Function<Integer, AvgCount> createAcc = new Function<Integer, AvgCount>() {
public AvgCount call(Integer x) {
return new AvgCount(x, 1);
}
};
Function2<AvgCount, Integer, AvgCount> addAndCount =
new Function2<AvgCount, Integer, AvgCount>() {
public AvgCount call(AvgCount a, Integer x) {
a.total_ += x;
a.num_ += 1;
return a;
}
};
Function2<AvgCount, AvgCount, AvgCount> combine =
new Function2<AvgCount, AvgCount, AvgCount>() {
public AvgCount call(AvgCount a, AvgCount b) {
a.total_ += b.total_;
a.num_ += b.num_;
return a;
}
};
AvgCount initial = new AvgCount(0,0);
JavaPairRDD<String, AvgCount> avgCounts =
nums.combineByKey(createAcc, addAndCount, combine);
Map<String, AvgCount> countMap = avgCounts.collectAsMap();
for (Entry<String, AvgCount> entry : countMap.entrySet()) {
System.out.println(entry.getKey() + ":" + entry.getValue().avg());
}

combineByKey() 数据流示意图

  有很多函数可以进行基于键的数据合并。它们中的大多数都是在combineByKey() 的基础上实现的,为用户提供了更简单的接口。不管怎样,在Spark 中使用这些专用的聚合函数,始终要比手动将数据分组再归约快很多。

Spark中的CombineKey()详解的更多相关文章

  1. Spark中的分区方法详解

    转自:https://blog.csdn.net/dmy1115143060/article/details/82620715 一.Spark数据分区方式简要 在Spark中,RDD(Resilien ...

  2. [Spark内核] 第36课:TaskScheduler内幕天机解密:Spark shell案例运行日志详解、TaskScheduler和SchedulerBackend、FIFO与FAIR、Task运行时本地性算法详解等

    本課主題 通过 Spark-shell 窥探程序运行时的状况 TaskScheduler 与 SchedulerBackend 之间的关系 FIFO 与 FAIR 两种调度模式彻底解密 Task 数据 ...

  3. Spark log4j日志配置详解(转载)

    一.spark job日志介绍    spark中提供了log4j的方式记录日志.可以在$SPARK_HOME/conf/下,将 log4j.properties.template 文件copy为 l ...

  4. php中关于引用(&)详解

    php中关于引用(&)详解 php的引用(就是在变量或者函数.对象等前面加上&符号) 在PHP 中引用的意思是:不同的变量名访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的 ...

  5. JavaScript正则表达式详解(二)JavaScript中正则表达式函数详解

    二.JavaScript中正则表达式函数详解(exec, test, match, replace, search, split) 1.使用正则表达式的方法去匹配查找字符串 1.1. exec方法详解 ...

  6. AngularJS select中ngOptions用法详解

    AngularJS select中ngOptions用法详解   一.用法 ngOption针对不同类型的数据源有不同的用法,主要体现在数组和对象上. 数组: label for value in a ...

  7. 【转载】C/C++中extern关键字详解

    1 基本解释:extern可以置于变量或者函数前,以标示变量或者函数的定义在别的文件中,提示编译器遇到此变量和函数时在其他模块中寻找其定义.此外extern也可用来进行链接指定. 也就是说extern ...

  8. oracle中imp命令详解 .

    转自http://www.cnblogs.com/songdavid/articles/2435439.html oracle中imp命令详解 Oracle的导入实用程序(Import utility ...

  9. Android中Service(服务)详解

    http://blog.csdn.net/ryantang03/article/details/7770939 Android中Service(服务)详解 标签: serviceandroidappl ...

随机推荐

  1. 说一下 runnable 和 callable 有什么区别?(未完成)

    说一下 runnable 和 callable 有什么区别?(未完成)

  2. NoClassDefFoundError: org/springframework/boot/bind/RelaxedDataBinder

    今天启动springboot的时候发现一个类不能注入RelaxedDataBinder,发现是没有相应的jar包,原因是在版本2.x之后删除了包.所以只要在之后的引用版本中换成2.x之后即可. 查看p ...

  3. 彻底解决matplotlib中文乱码问题

    1.环境查看a.系统版本查看 [hadoop@p168 ~]$ cat /etc/redhat-release CentOS Linux release 7.2.1511 (Core) b.系统中文字 ...

  4. [唐胡璐]MongoDB - 在Win7下环境搭建

    做Selenium一直都是用的Excel来管理数据驱动的数据,现在想用MongoDB来管理,所以对MongoDB做一个简单的了解应用: Include the below items:1. what ...

  5. redis 订阅&发布(转载)

    https://segmentfault.com/a/1190000016898228?utm_source=coffeephp.com 方法一: redis_helper.py: 封装发布订阅方法 ...

  6. python numpy的基本操作

    站长资讯平台:文章目录0.NumPy 与 ndarry1.数组属性查看:类型.尺寸.形状.维度2.numpy元素中数据存储方式,数据类型,类型转换2.1 查看元素数据存储类型2.2 元素数据存储类型转 ...

  7. Charles破解注册

    Charles破解注册English 本页面会持续更新Charles最新版破解注册方法,建议加入收藏 Charles 4.1.2 下载Charles v4.1.2 并安装 云盘下载: Windows ...

  8. Codeforces Round #495 (Div. 2) A,B,C

    A题 1.新添加一间酒店,要求酒店离已有的最近的一间酒店的距离恰好等于d 2.最左和最右必定存在合适的两种情况 3.酒店之间的情况就要判断两间酒店间的距离: 小于2d,表示无法在这两间酒店中间找到合适 ...

  9. CF796D Police Stations BFS+染色

    题意:给定一棵树,树上有一些点是警察局,要求所有点到最近的警察局的距离不大于 $d$,求最多能删几条边 ? 题解: 考虑什么时候一条边可以被断开:这条边的两个端点被两个不同的警察局覆盖掉. 我们要设计 ...

  10. [Luogu] 魔板

    https://www.luogu.org/problemnew/show/P1275 #include <iostream> #include <cstdio> #inclu ...