遍历图像的4种方式

一、at<typename>(i,j)

Mat类提供了一个at的方法用于取得图像上的点,它是一个模板函数,可以取到任何类型的图像上的点。下面我们通过一个图像处理中的实际来说明它的用法。

在实际应用中,我们很多时候需要对图像降色彩,因为256*256*256实在太多了,在图像颜色聚类或彩色直方图时,我们需要用一些代表性的颜色代替丰富的色彩空间,我们的思路是将每个通道的256种颜色用64种代替,即将原来256种颜色划分64个颜色段,每个颜色段取中间的颜色值作为代表色。

void colorReduce(Mat& image,int div)
{
  for(int i=;i<image.rows;i++)
  {
    for(int j=;j<image.cols;j++)
    {
      image.at<Vec3b>(i,j)[]=image.at<Vec3b>(i,j)[]/div*div+div/;
      image.at<Vec3b>(i,j)[]=image.at<Vec3b>(i,j)[]/div*div+div/;
      image.at<Vec3b>(i,j)[]=image.at<Vec3b>(i,j)[]/div*div+div/;
    }
  }
}

通过上面的例子我们可以看出,at方法取图像中的点的用法:

image.at<uchar>(i,j):取出灰度图像中i行j列的点。

image.at<Vec3b>(i,j)[k]:取出彩色图像中i行j列第k通道的颜色点。其中uchar,Vec3b都是图像像素值的类型,不要对Vec3b这种类型感觉害怕,其实在core里它是通过typedef Vec<T,N>来定义的,N代表元素的个数,T代表类型。

更简单一些的方法:OpenCV定义了一个Mat的模板子类为Mat_,它重载了operator()让我们可以更方便的取图像上的点。

Mat_<uchar> im=image;

im(i,j)=im(i,j)/div*div+div/2;

二、高效一点:用指针来遍历图像

上面的例程中可以看到,我们实际喜欢把原图传进函数内,但是在函数内我们对原图像进行了修改,而将原图作为一个结果输出,很多时候我们需要保留原图,这样我们需要一个原图的副本。

void colorReduce(const Mat& image,Mat& outImage,int div)
{
// 创建与原图像等尺寸的图像
outImage.create(image.size(),image.type());
int nr=image.rows;
// 将3通道转换为1通道
int nl=image.cols*image.channels();
for(int k=;k<nr;k++)
{
// 每一行图像的指针
const uchar* inData=image.ptr<uchar>(k);
uchar* outData=outImage.ptr<uchar>(k);
for(int i=;i<nl;i++)
{
outData[i]=inData[i]/div*div+div/;
}
}
}

从上面的例子中可以看出,取出图像中第i行数据的指针:image.ptr<uchar>(i)。

值得说明的是:程序中将三通道的数据转换为1通道,在建立在每一行数据元素之间在内存里是连续存储的,每个像素三通道像素按顺序存储。也就是一幅图像数据最开始的三个值,是最左上角的那像素的三个通道的值。

但是这种用法不能用在行与行之间,因为图像在OpenCV里的存储机制问题,行与行之间可能有空白单元。这些空白单元对图像来说是没有意思的,只是为了在某些架构上能够更有效率,比如intel MMX可以更有效的处理那种个数是4或8倍数的行。但是我们可以申明一个连续的空间来存储图像,这个话题引入下面最为高效的遍历图像的机制。

三、更高效的方法

上面已经提到过了,一般来说图像行与行之间往往存储是不连续的,但是有些图像可以是连续的,Mat提供了一个检测图像是否连续的函数isContinuous()。当图像连通时,我们就可以把图像完全展开,看成是一行。

void colorReduce(const Mat& image,Mat& outImage,int div)
{
int nr=image.rows;
int nc=image.cols;
outImage.create(image.size(),image.type());
if(image.isContinuous()&&outImage.isContinuous())
{
nr=;
nc=nc*image.rows*image.channels();
}
for(int i=;i<nr;i++)
{
const uchar* inData=image.ptr<uchar>(i);
uchar* outData=outImage.ptr<uchar>(i);
for(int j=;j<nc;j++)
{
*outData++=*inData++/div*div+div/;
}
}
}

用指针除了用上面的方法外,还可以用指针来索引固定位置的像素:

image.step返回图像一行像素元素的个数(包括空白元素),image.elemSize()返回一个图像像素的大小。

image.at<uchar>(i,j)=image.data+i*image.step+j*image.elemSize();

四、还有吗?用迭代器来遍历。

下面的方法可以让我们来为图像中的像素声明一个迭代器:

MatIterator_<Vec3b> it;

Mat_<Vec3b>::iterator it;

如果迭代器指向一个const图像,则可以用下面的声明:

MatConstIterator<Vec3b> it; 或者

Mat_<Vec3b>::const_iterator it;

下面我们用迭代器来简化上面的colorReduce程序:

void colorReduce(const Mat& image,Mat& outImage,int div)
{
outImage.create(image.size(),image.type());
MatConstIterator_<Vec3b> it_in=image.begin<Vec3b>();
MatConstIterator_<Vec3b> itend_in=image.end<Vec3b>();
MatIterator_<Vec3b> it_out=outImage.begin<Vec3b>();
MatIterator_<Vec3b> itend_out=outImage.end<Vec3b>();
while(it_in!=itend_in)
{
(*it_out)[]=(*it_in)[]/div*div+div/;
(*it_out)[]=(*it_in)[]/div*div+div/;
(*it_out)[]=(*it_in)[]/div*div+div/;
it_in++;
it_out++;
}
}

如果你想从第二行开始,则可以从image.begin<Vec3b>()+image.rows开始。

上面4种方法中,第3种方法的效率最高!

opencv-01--图像的遍历的更多相关文章

  1. Opencv中图像的遍历与像素操作

    Opencv中图像的遍历与像素操作 OpenCV中表示图像的数据结构是cv::Mat,Mat对象本质上是一个由数值组成的矩阵.矩阵的每一个元素代表一个像素,对于灰度图像,像素是由8位无符号数来表示(0 ...

  2. 【OpenCV】图像的遍历

    Mat类的两种遍历比较快的方式,分别给出了按行和按列遍历,以及运行过程图. 原图: 按行遍历过程图 按列遍历过程图 代码如下: //ptr逐行访问 void ptrScanX(Mat& src ...

  3. Java基于opencv实现图像数字识别(五)—投影法分割字符

    Java基于opencv实现图像数字识别(五)-投影法分割字符 水平投影法 1.水平投影法就是先用一个数组统计出图像每行黑色像素点的个数(二值化的图像): 2.选出一个最优的阀值,根据比这个阀值大或小 ...

  4. Java基于opencv实现图像数字识别(四)—图像降噪

    Java基于opencv实现图像数字识别(四)-图像降噪 我们每一步的工作都是基于前一步的,我们先把我们前面的几个函数封装成一个工具类,以后我们所有的函数都基于这个工具类 这个工具类呢,就一个成员变量 ...

  5. Java基于opencv实现图像数字识别(三)—灰度化和二值化

    Java基于opencv实现图像数字识别(三)-灰度化和二值化 一.灰度化 灰度化:在RGB模型中,如果R=G=B时,则彩色表示灰度颜色,其中R=G=B的值叫灰度值:因此,灰度图像每个像素点只需一个字 ...

  6. Java基于opencv实现图像数字识别(二)—基本流程

    Java基于opencv实现图像数字识别(二)-基本流程 做一个项目之前呢,我们应该有一个总体把握,或者是进度条:来一步步的督促着我们来完成这个项目,在我们正式开始前呢,我们先讨论下流程. 我做的主要 ...

  7. 利用OpenCV给图像添加中文标注

    利用OpenCV给图像添加中文标注 : 参考:http://blog.sina.com.cn/s/blog_6bbd2dd101012dbh.html  和https://blog.csdn.net/ ...

  8. OpenCV中图像的格式Mat 图像深度

    opencv中图像的格式Mat 有图像的定义,图像深度.类型格式等,其中Mat的参数depth为深度,深度反应出图像颜色像素值: 关于数据的储存:(转) Mat_<uchar>对应的是CV ...

  9. Java基于opencv实现图像数字识别(一)

    Java基于opencv实现图像数字识别(一) 最近分到了一个任务,要做数字识别,我分配到的任务是把数字一个个的分开:当时一脸懵逼,直接百度java如何分割图片中的数字,然后就百度到了用Buffere ...

  10. OpenCV中图像算术操作与逻辑操作

    OpenCV中图像算术操作与逻辑操作 在图像处理中有两类最重要的基础操作各自是图像点操作与块操作.简单点说图像点操作就是图像每一个像素点的相关逻辑与几何运算.块操作最常见就是基于卷积算子的各种操作.实 ...

随机推荐

  1. Apache RocketMQ 的过去、现在和未来 原创: DataPipeline DataPipeline数见科技 前天

    Apache RocketMQ 的过去.现在和未来 原创: DataPipeline DataPipeline数见科技 前天

  2. js实现两个文本框数值的加减乘除运算

    <!DOCTYPE html><html> <head> <meta charset="utf-8"> <title>& ...

  3. 阶段5 3.微服务项目【学成在线】_day17 用户认证 Zuul_03-用户认证-认证服务查询数据库-查询用户接口-接口定义

    1.2.4 查询用户接口 完成用户中心根据账号查询用户信息接口功能. 在ucenter这个服务里面定义查询用户信息的接口 这个接口在auth的服务的loadUserByUserName这个方法里面被调 ...

  4. 使用Lock对象实现同步效果

    Lock是一个接口,为了使用一个Lock对象,需要用到   Lock lock = new ReentrantLock();   与 synchronized (someObject) 类似的,loc ...

  5. centos7安装配置gitlab详细教程

    一. 安装并配置必要的依赖关系在CentOS系统上安装所需的依赖:ssh,防火墙,postfix(用于邮件通知) ,wget,以下这些命令也会打开系统防火墙中的HTTP和SSH端口访问. 1.安装ss ...

  6. tp5.1 model 方法下的like语句查询

    $where_like = ['title','like','%' . $_GET['title'] . '%']; $result_list = $this->model->where( ...

  7. CSS基础(html+css基础)

    css: CSS全称为“层叠样式表 (Cascading Style Sheets)”,它主要是用于定义HTML内容在浏览器内的显示样式,如文字大小.颜色.字体加粗等. 1.CSS代码语法: css ...

  8. (CVE-2017-7494)Samba远程代码执行[Linux]

    简介 此漏洞是针对开启了共享的smb服务 漏洞利用 启动msfconsole search is_known_pipename   搜索此模块 use exploit/linux/samba/is_k ...

  9. python return逻辑判断表达式(21)

    一.return逻辑判断表达式 and and:遇假则假,所以前面为假就不执行和判断后面直接返回假:前面为真则继续判断执行后面直到表达式结束或者出现假为止; # !usr/bin/env python ...

  10. Netty中两种Keepalive的区别

    在Server端开启TCP keepalive: 两种方式 serverBootstrap.childOption(ChannelOption.SO_KEEPALIVE, true); serverB ...