Build Telemetry for Distributed Services之Jaeger
github链接:https://github.com/jaegertracing/jaeger
官网:https://www.jaegertracing.io/
Jaeger: open source, end-to-end distributed tracing
Monitor and troubleshoot transactions in complex distributed systems
a Cloud Native Computing Foundation incubating project.
Uber published a blog post, Evolving Distributed Tracing at Uber, where they explain the history and reasons for the architectural choices made in Jaeger. Yuri Shkuro, creator of Jaeger, also published a book Mastering Distributed Tracing that covers in-depth many aspects of Jaeger design and operation, as well as distributed tracing in general.
Why Jaeger?
As on-the-ground microservice practitioners are quickly realizing, the majority of operational problems that arise when moving to a distributed architecture are ultimately grounded in two areas: networking and observability. It is simply an orders of magnitude larger problem to network and debug a set of intertwined distributed services versus a single monolithic application.
Problems that Jaeger addresses
It is used for monitoring and troubleshooting microservices-based distributed systems, including:
- Distributed context propagation
- Distributed transaction monitoring
- Root cause analysis
- Service dependency analysis
- Performance / latency optimization
Kubernetes and OpenShift
- Kubernetes templates: https://github.com/jaegertracing/jaeger-kubernetes
- Kubernetes Operator: https://github.com/jaegertracing/jaeger-operator
- OpenShift templates: https://github.com/jaegertracing/jaeger-openshift
Features
- Discover architecture of the whole system via data-driven dependency diagram.
- View request timeline and errors; understand how the app works.
- Find sources of latency and lack of concurrency.
- Highly contextualized logging.
Use baggage propagation to:
- Diagnose inter-request contention (queueing).
- Attribute time spent in a service.
Use open source libraries with OpenTracing integration to get vendor-neutral instrumentation for free.
Features
- OpenTracing compatible data model and instrumentation libraries
- Uses consistent upfront sampling with individual per service/endpoint probabilities
- Multiple storage backends: Cassandra, Elasticsearch, memory.
- Adaptive sampling (coming soon)
- Post-collection data processing pipeline (coming soon)
Technical Specs
- Backend components implemented in Go
- React/Javascript UI
- Supported storage backends:
- Cassandra 3.4+
- Elasticsearch 5.x, 6.x, 7.x
- Kafka
- memory storage
Span
A span represents a logical unit of work in Jaeger that has an operation name, the start time of the operation, and the duration. Spans may be nested and ordered to model causal relationships.


Trace
A trace is a data/execution path through the system, and can be thought of as a directed acyclic graph of spans
Query
Query is a service that retrieves traces from storage and hosts a UI to display them
参考:
Components
Jaeger can be deployed either as all-in-one binary, where all Jaeger backend components run in a single process, or as a scalable distributed system, discussed below. There two main deployment options:
- Collectors are writing directly to storage.
- Collectors are writing to Kafka as a preliminary buffer.

Illustration of direct-to-storage architecture

Illustration of architecture with Kafka as intermediate buffer
This section details the constituent parts of Jaeger and how they relate to each other. It is arranged by the order in which spans from your application interact with them.
Jaeger client libraries
Jaeger clients are language specific implementations of the OpenTracing API. They can be used to instrument applications for distributed tracing either manually or with a variety of existing open source frameworks, such as Flask, Dropwizard, gRPC, and many more, that are already integrated with OpenTracing.
An instrumented service creates spans when receiving new requests and attaches context information (trace id, span id, and baggage) to outgoing requests. Only ids and baggage are propagated with requests; all other information that compose a span like operation name, logs, etc. are not propagated. Instead sampled spans are transmitted out of process asynchronously, in the background, to Jaeger Agents.
The instrumentation has very little overhead, and is designed to be always enabled in production.
Note that while all traces are generated, only a few are sampled. Sampling a trace marks the trace for further processing and storage. By default, Jaeger client samples 0.1% of traces (1 in 1000), and has the ability to retrieve sampling strategies from the agent.

Agent
The Jaeger agent is a network daemon that listens for spans sent over UDP, which it batches and sends to the collector. It is designed to be deployed to all hosts as an infrastructure component. The agent abstracts the routing and discovery of the collectors away from the client.
Collector
The Jaeger collector receives traces from Jaeger agents and runs them through a processing pipeline. Currently our pipeline validates traces, indexes them, performs any transformations, and finally stores them.
Jaeger’s storage is a pluggable component which currently supports Cassandra, Elasticsearch and Kafka
Ingester
Ingester is a service that reads from Kafka topic and writes to another storage backend (Cassandra, Elasticsearch)
Monitoring Jaeger
Jaeger itself is a distributed, microservices based system. If you run it in production, you will likely want to setup adequate monitoring for different components, e.g. to ensure that the backend is not saturated by too much tracing data
Metrics
By default Jaeger microservices expose metrics in Prometheus format. It is controlled by the following command line options:
--metrics-backendcontrols how the measurements are exposed. The default value isprometheus, another option isexpvar, the Go standard mechanism for exposing process level statistics.--metrics-http-routespecifies the name of the HTTP endpoint used to scrape the metrics (/metricsby default).
Each Jaeger component exposes the metrics scraping endpoint on one of the HTTP ports they already serve:
| Component | Port |
|---|---|
| jaeger-agent | 14271 |
| jaeger-collector | 14269 |
| jaeger-query | 16687 |
| jaeger-ingester | 14270 |
Logging
Jaeger components only log to standard out, using structured logging library go.uber.org/zap configured to write log lines as JSON encoded strings, for example:
{"level":"info","ts":1517621222.261759,"caller":"healthcheck/handler.go:99","msg":"Health Check server started","http-port":14269,"status":"unavailable"}
The log level can be adjusted via --log-level command line switch; default level is info.
Build Telemetry for Distributed Services之Jaeger的更多相关文章
- Build Telemetry for Distributed Services之Open Telemetry简介
官网链接:https://opentelemetry.io/about/ OpenTelemetry is the next major version of the OpenTracing and ...
- Build Telemetry for Distributed Services之OpenCensus:C#
OpenCensus Easily collect telemetry like metrics and distributed traces from your services OpenCensu ...
- Build Telemetry for Distributed Services之OpenTracing实践
官网:https://opentracing.io/docs/best-practices/ Best Practices This page aims to illustrate common us ...
- Build Telemetry for Distributed Services之Open Telemetry来历
官网:https://opentelemetry.io/ github:https://github.com/open-telemetry/ Effective observability requi ...
- Build Telemetry for Distributed Services之OpenTracing简介
官网地址:https://opentracing.io/ What is Distributed Tracing? Who Uses Distributed Tracing? What is Open ...
- Build Telemetry for Distributed Services之OpenTracing项目
中文文档地址:https://wu-sheng.gitbooks.io/opentracing-io/content/pages/quick-start.html 中文github地址:https:/ ...
- Build Telemetry for Distributed Services之Elastic APM
官网地址:https://www.elastic.co/guide/en/apm/get-started/current/index.html Overview Elastic APM is an a ...
- Build Telemetry for Distributed Services之OpenCensus:Tracing2(待续)
part 1:Tracing1 Sampling Sampling Samplers Global sampler Per span sampler Rules References
- Build Telemetry for Distributed Services之OpenTracing指导:C#
官网链接:https://opentracing.io/guides/ 官方微博:https://medium.com/opentracing Welcome to the OpenTracing G ...
随机推荐
- http服务详解(3)
https https:http over sslSSL会话的简化过程 (1) 客户端发送可供选择的加密方式,并向服务器请求证书 (2) 服务器端发送证书以及选定的加密方式给客户端 (3) 客户端取得 ...
- 标准库类型之vector
上篇中遗留了一个小作业,就是用string中的find_first_not_of和find_last_not_of函数来实现字符串左右空格的去除,先来完成它,实现的思路是先来编写去除左空格,然后再编写 ...
- 51Nod - 1714 B君的游戏
每个数的SG值之和他有多少个1相关 打表复杂度:找K个有序的<n的非负数的复杂度为nk/(k!) 则这题的SG打表复杂度为648/7! 为1e10左右 void dfs(int cur, int ...
- [唐胡璐]Selenium技巧- Prop.Properties配置测试应用的环境和其他配置项
prop.propertiesfile contains important info that needs to be changed before the test is run, such a ...
- 洛谷P1169 棋盘制作【悬线法】【区间dp】
题目:https://www.luogu.org/problemnew/show/P1169 题意:n*m的黑白格子,找到面积最大的黑白相间的正方形和矩形. 思路:传说中的悬线法!用下面这张图说明一下 ...
- 洛谷P2114 起床困难综合症【位运算】【贪心】
题目:https://www.luogu.org/problemnew/show/P2114 题意:有n个操作,每个可以是与.或.异或 一个数. 初始值是0~m之间的一个数,问经过n个运算之后,可以得 ...
- 用python做数据分析4|pandas库介绍之DataFrame基本操作
原文地址 怎样删除list中空字符? 最简单的方法:new_list = [ x for x in li if x != '' ] 今天是5.1号. 这一部分主要学习pandas中基于前面两种数据结构 ...
- MySQL percona-toolkit工具详解
一.检查和安装与Perl相关的模块 PT工具是使用Perl语言编写和执行的,所以需要系统中有Perl环境. 依赖包检查命令为: rpm -qa perl-DBI perl-DBD-MySQL perl ...
- 转载:appium踩过的坑
原文地址:http://blog.csdn.net/wirelessqa/article/details/29188665 自己的操作:由于在window上安装appium时,报各种错误:所以选择在u ...
- 51nod 1412
考虑到只与深度和点的个数有关$f[n][d]$ 表示 $n$ 个点,深度为 $d$ 的 $AVL$ 树有多少种 枚举左子树大小为 $i$, 进行转移并且深度为 $logn$ 级别 $f[n][d] = ...