并查集与最小生成树Kruskal算法
一、什么是并查集
在计算机科学中,并查集是一种树型的数据结构,用于处理一些不交集的合并及查询问题。有一个联合-查找算法(union-find algorithm)定义了两个用于次数据结构的操作:
- Find:确定元素属于哪一个子集。它可以被用来确定两个元素是否属于同一子集。
- Union:将两个子集合并成一个集合。
二、主要操作
- 初始化:把每个点所在的集合初始化为其自身。
for(int i=1;i<=n;i++)
f[i]=i;
- 查找:查找元素所在的集合,即根节点。
int find(int x)
{
while(f[x]!=x)
x=f[x];
return x;
}
- 合并:将两个元素所在的集合合并为一个集合。
void Union(int x1,int x2)
{
int t1=find(x1);
int t2=find(x2);
if(t1!=t2)
f[t2]=t1;
}
三、优化
上面的代码看似简洁,但是每一次find操作的时间复杂度为O(H),H为树的高度,由于我们没有对树做特殊处理,所以树的不断合并可能会使树严重不平衡,最坏情况每个节点都只有一个子节点。
所以在find函数里采用路径压缩。
int find(int x) //查找x元素所在的集合,回溯时压缩路径
{
if (x != f[x])
{
f[x] = find(f[x]);
//从x结点搜索到祖先结点所经过的结点都指向该祖先结点
}
return f[x];
}
四、模板题
#include<bits/stdc++.h>
using namespace std;
int n,m;
int f[10002];
int find(int x)
{
if(x!=f[x])
f[x]=find(f[x]);
return f[x];
}
void Union(int x1,int x2)
{
int t1=find(x1);
int t2=find(x2);
if(t1!=t2) //祖先不一样
f[t2]=t1; //把t2的祖先变为x1的祖先t1
}
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)
f[i]=i;
for(int i=0;i<m;i++)
{
int z,x,y;
cin>>z>>x>>y;
if(z==1)
Union(x,y);
else
{
if(find(x)!=find(y))cout<<"N"<<endl;
else cout<<"Y"<<endl;
}
}
return 0;
}
五、最小生成树
一个有n个结点的连通图的生成树是原图的极小联通子图,期包含原图的所有n个结点,且有保持图连通的最少边。
最小生成树其实就是最小权重生成树的简称。
Kruskal算法
- 将图的所有边按照权值从小到大排序
- 遍历所有排好序的边,若构不成回路,则将该边加入到集合中
- 直到找出n-1条边
#include<bits/stdc++.h>
using namespace std;
int n,m;
int s,maxm;
int p[100002];
struct node{
int u;
int v;
int c;
}info[100002];
bool cmp(node x1,node x2)
{
if(x1.c!=x2.c)return x1.c<x2.c;
else if(x1.u!=x2.u) return x1.u<x2.u;
else return x1.v<x2.v;
}
int find(int x) //查找x元素所在的集合,回溯时压缩路径
{
if (x!=p[x])
{
p[x]=find(p[x]);
}
return p[x];
}
void bcj(int x1,int x2)//把x2并入x1的集合
{
int t1,t2;//存储祖先节点
t1=find(x1);
t2=find(x2);
if(t1!=t2)p[t2]=t1;
}
int main()
{
cin>>n>>m;//n就是顶点数,m是边数
for(int i=1;i<=n;i++)
{
p[i]=i;
}
for(int i=0;i<m;i++)
{
cin>>info[i].u>>info[i].v>>info[i].c;
}
sort(info,info+m,cmp);
for(int i=0;i<m;i++)//遍历所有的边
{
if(find(info[i].u)!=find(info[i].v))
{
bcj(info[i].u,info[i].v);//把v并入u的集合
maxm=max(maxm,info[i].c);
}
}
cout<<n-1<<" "<<maxm;
return 0;
}
并查集与最小生成树Kruskal算法的更多相关文章
- hdu 1233(还是畅通project)(prime算法,克鲁斯卡尔算法)(并查集,最小生成树)
还是畅通project Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Tota ...
- POJ-2421Constructing Roads,又是最小生成树,和第八届河南省赛的引水工程惊人的相似,并查集与最小生成树的灵活与能用,水过~~~
Constructing Roads Time Limit: 2000MS Memory Limit: 65536K Description There are N v ...
- 【转】最小生成树——Kruskal算法
[转]最小生成树--Kruskal算法 标签(空格分隔): 算法 本文是转载,原文在最小生成树-Prim算法和Kruskal算法,因为复试的时候只用到Kruskal算法即可,故这里不再涉及Prim算法 ...
- 模板——最小生成树kruskal算法+并查集数据结构
并查集:找祖先并更新,注意路径压缩,不然会时间复杂度巨大导致出错/超时 合并:(我的祖先是的你的祖先的父亲) 找父亲:(初始化祖先是自己的,自己就是祖先) 查询:(我们是不是同一祖先) 路径压缩:(每 ...
- POJ 3723 Conscription (Kruskal并查集求最小生成树)
Conscription Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 14661 Accepted: 5102 Des ...
- 关于最小生成树(并查集)prime和kruskal
适合对并查集有一定理解的人. 新手可能看不懂吧.... 并查集简单点说就是将相关的2个数字联系起来 比如 房子 1 2 3 4 5 6 ...
- 【Matrix-tree定理】【并查集】【kruscal算法】bzoj1016 [JSOI2008]最小生成树计数
题意:求一个图的最小生成树个数. 矩阵树定理:一张无向图的生成树个数 = (度数矩阵 - 邻接矩阵)的任意一个n-1主子式的值. 度数矩阵除了对角线上D[i][i]为i的度数(不计自环)外,其他位置是 ...
- 最小生成树——kruskal算法
kruskal和prim都是解决最小生成树问题,都是选取最小边,但kruskal是通过对所有边按从小到大的顺序排过一次序之后,配合并查集实现的.我们取出一条边,判断如果它的始点和终点属于同一棵树,那么 ...
- 最小生成树 kruskal算法&prim算法
(先更新到这,后面有时间再补,嘤嘤嘤) 今天给大家简单的讲一下最小生成树的问题吧!(ps:本人目前还比较菜,所以最小生成树最后的结果只能输出最小的权值,不能打印最小生成树的路径) 本Tianc在刚学的 ...
随机推荐
- [Angular 8] Lazy loading with dynamic loading syntax
@NgModule({ declarations: [AppComponent, HomeComponent], imports: [ BrowserModule, MatSidenavModule, ...
- LeetCode 282. Expression Add Operators
原题链接在这里:https://leetcode.com/problems/expression-add-operators/ 题目: Given a string that contains onl ...
- Soda Theme sublime 自定义编辑器主题
1.Soda ThemeSublime Text 3中较为常用的一款自定义编辑器主题,用过的人都说好.Soda Theme包含代码着色.标签.图标,拥有light和dark两种颜色主题便于用户在不同时 ...
- vuex的使用介绍
1.vuex是什么? vuex是一个专为vue.js应用程序开发的状态管理模式(它采用集中式存贮管理应用的所有组件的状态,并以相应的规则保证状态以一种可预测的方式发生变化). 2.vuex的核心概念? ...
- MutationObserverAPI--微任务
1. 作用 MutationObserverAPI可以看作一个监听DOM所有变化(包含节点.属性.文本内容的变动)的接口. 和EventTargetAPI的addEventListener相比: 共同 ...
- SQL Server 表表达式--派生表、公用表表达式(CTE)、视图和内联表值函数
概述 表表达式是一种命名的查询表达式,代表一个有效地关系表.可以像其他表一样,在数据处理中使用表表达式. SQL Server支持四种类型的表表达式:派生表,公用表表达式,视图和内联表值函数. 为什么 ...
- Laradock Laravel database connection refused
Laradock Laravel database connection refused SHARE Laradock is a PHP development environment which ...
- 线程池(2)-Executors提供4个线程池
1.为什么不使用Executors提供4个线程池创建线程池 阿里巴巴开放手册这样写: . [强制]线程池不允许使用 Executors 去创建,而是通过 ThreadPoolExecutor 的方式, ...
- Android Studio如何删除一个Module
当你想在Android Studio中删除某个module时,大家习惯性的做法都是选中要删除的module,右键去找delete.但是在Android Studio中你选中module,右键会发现没 ...
- Java-JVM 锁优化
synchronized 的实现方式是用 Monitor 进行加锁,这是一种互斥锁,为了表示他对性能的影响我们称之为重量级锁. Java 的线程是映射到操作系统原生线程之上的,要阻塞或唤醒一个线程就需 ...