Factor_Analysis(因子分析)
Factor Analysis 简书:较好理解的解释,其中公式有一定的推导(仅展现关键步骤,细节大多需要自行补充),基本为结论式。

感性层面理解:首先,明确FA和PCA的区别。PCA做的是对某个样本,试图寻找到一组方差尽量大的线性表示(基向量),以便降维;FA做的是,假想存在一些隐变量,它们影响着我们的观测结果(即我们得到的数据样本),我们试图找到两者的联系:$x = \Lambda z + \mu + \epsilon$,在简书中有说明其MLE函数形式,不难看出它的MLE形式难以求解,故采用EM(机器学习之最大期望(EM)算法,讲得不错)迭代以求最优解。此外,FA通常用于$m<<n$的庆幸

心路历程:首先,我去推了一下EM,发现自己之前学的时候,由于是在GMM求解的时候需要的,所以并没有很仔细地推导,所以就再去推导了一次推了我一页草稿纸。其次,没有找到:$\mu_{x_1|x_2} = \mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (x_2 - \mu_2)$ 以及 $\Sigma_{1|2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$ 的公式名称,如果看官知晓其名称,望告知不才,感激不尽。最后,还是忘记了矩阵求导,又去查了一下,而我也尚未进行公式回带和化简整合。自闭了,一大堆

疑问:简书作者在开头提到:由于存在隐变量,同时不能由MLE得到close form。(close form:即闭式解,通俗解释就是$\nabla f(x) = 0$的$x$表达式),这里不理解为何没有闭式解,目前推的结果(MLE式子),大概猜测是因为$m<<n$的缘故,这样带来的结果就是$\left| \Sigma \right| = 0$(其实本身$\left| \Sigma \right|$是不等于0的,但是由于$m<<n$,所以它等于0,其实就是由于样本数量不足,或者说难以得到如此高维并且充足的样本)。显然,$\left| \Sigma \right| = 0$会在后续中遇到诸多麻烦,最容易想的就是$\Sigma$是不可逆的,这显然很难进行接下来的计算,虽然我算的不多,但是$\Sigma^{-1}$几乎都是需要的。然而,可以引入伪逆,所以肯定还有我没有想到的原因,或者说伪逆会带来较差的表现等等。

备注:由于博客园写推导公式较为麻烦,所以没有在博客上进行推导,不过建议看官如果并未学习过上述知识,还是手推几次以便加强理解和记忆(当然也有一些少年仅仅看就能得到很好理解,并且运用巧妙)。比如在EM算法中,求解lower_bound之前,分子分母同乘一个量以便之后用Jensen不等式化简(orz)等等(好像其他的操作就比较平凡了)。最近闲来无事的时候,发现很多学习过的算法,特别是需要一定数学式子或者思维来求解的(我竟然想去求LCM解烤鸡??),似乎都忘了需要求解的表达式(嘴上讲讲天花乱坠,手里推推苦思冥想),虽然求解过程都不难,但是对于我来说,其中一些技巧还是需要理解的有些计算量也是大啊

Factor_Analysis的更多相关文章

  1. zoj Simple Equation 数论

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5176 AX+BY = XY  => (X-B)*(Y-A)= ...

  2. Python机器学习笔记 使用scikit-learn工具进行PCA降维

    之前总结过关于PCA的知识:深入学习主成分分析(PCA)算法原理.这里打算再写一篇笔记,总结一下如何使用scikit-learn工具来进行PCA降维. 在数据处理中,经常会遇到特征维度比样本数量多得多 ...

  3. OtterTune源码解析

    为了方便后面对ottertune进行魔(hu)改(gao),需要先搞清楚它的源码结构和pipeline OtterTune分为两大部分: server side: 包括一个MySQL数据库(用于存储调 ...

随机推荐

  1. Java 之 打印流

    打印流 1.概述 平常在控制台打印输出,是调用 print 方法和 println 方法完成的,这两个方法都来自于 java.io.PrintStream 类,该类能够方便地打印各种数据类型的值,是一 ...

  2. win10 系统解决mysql中文乱码问题

    问题: 向mysql 数据库插入数据是,出现中文乱码(中文均显示为‘??’) 原因: mysql 默认的字符集是latin1,所以我么需要改为ut8编码才可以 解决: 1.以管理员权限运行cmd窗口 ...

  3. 前端框架开始学习Vue(一)

    MVVM开发思想图(图片可能会被缩小,请右键另存查看,图片来源于网络)   定义基本Vue代码结构   1 v-text,v-cloak,v-html命令 默认 v-text没有闪烁问题,但是会覆盖元 ...

  4. STM32定时器配置(TIM1、TIM2、TIM3、TIM4、TIM5、TIM8)高级定时器+普通定时器,定时计数模式下总结

    文章结构: ——> 一.定时器基本介绍 ——> 二.普通定时器详细介绍TIM2-TIM5 ——> 三.定时器代码实例 一.定时器基本介绍  之前有用过野火的学习板上面讲解很详细,所以 ...

  5. spring--分类索引

    1.过时api Spring(一)解决XmlBeanFactory过时问题 元素 'ref' 中不允许出现属性 'local' Spring学习笔记 关于spring 2.x中dependency-c ...

  6. clamscan-Linux查毒工具

    转载:https://www.cnblogs.com/tdcqma/p/7576183.html clamscan命令用于扫描文件和目录,一发现其中包含的计算机病毒,clamscan命令除了扫描lin ...

  7. LeetCode:137. 只出现一次的数字 II

    LeetCode:137. 只出现一次的数字 II 给定一个非空整数数组,除了某个元素只出现一次以外,其余每个元素均出现了三次.找出那个只出现了一次的元素. 说明: 你的算法应该具有线性时间复杂度. ...

  8. 使用springboot和easypoi进行的数据导出的小案例

    在这个案例中使用的有springboot和easypoi进行数据导出到excel中 yml文件是这样的: server: port: 8080 spring: datasource: url: jdb ...

  9. JAVA API连接HDFS HA集群

    使用JAVA API连接HDFS时我们需要使用NameNode的地址,开启HA后,两个NameNode可能会主备切换,如果连接的那台主机NameNode挂掉了,连接就会失败. HDFS提供了names ...

  10. vue2 父链,子组件索引及父子通信的props对象写法