poj2947(高斯消元法解同余方程组)
题目链接:https://vjudge.net/problem/POJ-2065
题意:题目看着较复杂,实际上就是给了n个同余方程,解n个未知数。
思路:套高斯消元法的模板即可。
AC代码:
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cstdlib>
using namespace std; const int maxn=;
int T,equ,var,MOD,a[maxn][maxn],x[maxn];
char s[]; int gcd(int a,int b){
return b?gcd(b,a%b):a;
} int lcm(int a,int b){
return a/gcd(a,b)*b;
} void init(){
memset(x,,sizeof(x));
for(int i=;i<equ;++i){
int k=i+,t=;
for(int j=;j<var;++j){
a[i][j]=t;
t=t*k%MOD;
}
}
} int Gauss(){
int k=,LCM,ta,tb,tmp;
for(int col=;k<equ&&col<var;++k,++col){
int max_r=k;
for(int i=k+;i<equ;++i){
if(abs(a[i][col])>abs(a[max_r][col]))
max_r=i;
}
if(max_r!=k){
for(int i=col;i<var+;++i)
swap(a[max_r][i],a[k][i]);
}
if(!a[k][col]){
--k;
continue;
}
for(int i=k+;i<equ;++i){
if(!a[i][col]) continue;
LCM=lcm(a[i][col],a[k][col]);
ta=LCM/a[i][col];
tb=LCM/a[k][col];
if(a[i][col]*a[k][col]<) tb=-tb;
for(int j=col;j<var+;++j){
a[i][j]=((a[i][j]*ta-a[k][j]*tb)%MOD+MOD)%MOD;
}
}
}
for(int i=k;i<equ;++i){
if(a[i][var])
return -;
}
if(k<var){
return var-k;
}
for(int i=equ-;i>=;--i){
tmp=a[i][var];
for(int j=i+;j<var;++j){
if(!a[i][j]) continue;
tmp-=a[i][j]*x[j];
tmp=(tmp%MOD+MOD)%MOD;
}
while(tmp%a[i][i]!=) tmp+=MOD;
x[i]=(tmp/a[i][i])%MOD;
}
return ;
} int main(){
scanf("%d",&T);
while(T--){
scanf("%d%s",&MOD,s);
equ=var=strlen(s);
init();
for(int i=;i<equ;++i){
int t;
if(s[i]=='*') t=;
else t=s[i]-'a'+;
a[i][var]=t;
}
Gauss();
for(int i=;i<var;++i){
printf("%d",x[i]);
if(i!=var-) printf(" ");
}
printf("\n");
}
return ;
}
poj2947(高斯消元法解同余方程组)的更多相关文章
- (模板)poj2947(高斯消元法解同余方程组)
题目链接:https://vjudge.net/problem/POJ-2947 题意:转换题意后就是已知m个同余方程,求n个变量. 思路: 值得学习的是这个模板里消元用到lcm的那一块.注意题目输出 ...
- hdu 5755 Gambler Bo (高斯消元法解同余方程组)
http://acm.hdu.edu.cn/showproblem.php?pid=5755 题意: n*m矩阵,每个格有数字0/1/2 每选择一个格子,这个格子+2,4方向相邻格子+1 如何选择格子 ...
- C++实现,拓展中国剩余定理——解同余方程组(理论证明和代码实现)
拓展中国剩余定理 前言 记得半年前还写过关于拓展中国剩余定理的博客...不过那时对其理解还不是比较深刻,写的也比较乱. 于是趁学校复习之机,再来重温一下拓展中国剩余定理(以下简称ExCRT) 记得半年 ...
- poj 2947 Widget Factory (高斯消元解同余方程组+判断无解、多解)
http://poj.org/problem?id=2947 血泪史: CE:poj的string类型要加string库,swap不能直接交换数组 WA: x[m-1]也有可能<3啊O(≧口≦) ...
- HDU1573:X问题(解一元线性同余方程组)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=1573 题目解析;HDU就是坑,就是因为n,m定义成了__int64就WAY,改成int就A了,无语. 这题 ...
- HDU3579:Hello Kiki(解一元线性同余方程组)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=3579 题目解析:求一元线性同余方程组的最小解X,需要注意的是如果X等于0,需要加上方程组通解的整数区间lc ...
- POJ 2947-Widget Factory(高斯消元解同余方程式)
题目地址:id=2947">POJ 2947 题意:N种物品.M条记录,接写来M行,每行有K.Start,End,表述从星期Start到星期End,做了K件物品.接下来的K个数为物品的 ...
- HDU1573 X问题【一元线性同余方程组】
题目链接: http://acm.hdu.edu.cn/showproblem.php? pid=1573 题目大意: 求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X ...
- AcWing 204. 表达整数的奇怪方式 (线性同余方程组)打卡
给定2n个整数a1,a2,…,ana1,a2,…,an和m1,m2,…,mnm1,m2,…,mn,求一个最小的整数x,满足∀i∈[1,n],x≡mi(mod ai)∀i∈[1,n],x≡mi(mod ...
随机推荐
- 快速幂 x
快速幂! 模板如下: #include<iostream> #include<cmath> #include<cstdio> #define LL long lon ...
- P4781 拉格朗日插值
#include <bits/stdc++.h> using namespace std; #define rep(i,a,n) for (int i=a;i<n;i++) #def ...
- C语言学习笔记5-程序结构
本系列文章由jadeshu编写,转载请注明出处.http://blog.csdn.net/jadeshu/article/details/50752148 作者:jadeshu 邮箱: jades ...
- 7月清北学堂培训 Day 3
今天是丁明朔老师的讲授~ 数据结构 绪论 下面是天天见的: 栈,队列: 堆: 并查集: 树状数组: 线段树: 平衡树: 下面是不常见的: 主席树: 树链剖分: 树套树: 下面是清北学堂课程表里的: S ...
- MySQL数据分析-(11)表补充:数据类型
大家好,我是jacky,很高兴继续跟大家学习<Mysql 数据分析实战系列教程>,上次课程jacky讲解了表层面的增删改查,jacky说最重要的是增,增就是创建表,作为一个严谨的MySQL ...
- CF1214D
CF1214D 题意: 给你一个 $ n \times m $ 的矩阵,求最少用多少个障碍,将 $ (1,1) $ 到 $ (n,m) $ 的路径堵死. 题意: 因为可以将起点两边堵死,所以答案最多是 ...
- PHP 之快递100接口封装
<?php /** * Created by PhpStorm. * User: Yang * Date: 2019/8/23 * Time: 10:38 */ class Kuaidi_Que ...
- JAVA基础知识|HTTP协议-两个特性
一.无连接 无连接:服务器与浏览器之间的一次连接只处理一个http请求,请求处理结束后,连接断开.下一次请求再重新建立连接. 然而随着互联网的发展,一台服务器同一时间处理的请求越来越多,如果依然采用原 ...
- HearthBuddy Ai 调试实战2 在使用海巨人的时候,少召唤了一个图腾(费用是对的)
问题 游戏面板 8是青玉之爪13是海巨人17是恐狼前锋 64是萨满 66是圣骑士63,99,46,是微型木乃伊[其中99和46都是2血3攻,63是2血1攻]57是鱼人木乃伊 微型木乃伊 "L ...
- ThinkPHP6.0学习之安装及问题解决
ThinkPHP6.0学习之安装及问题解决 ThinkPHP6.0开发版已经上线了,我已经等了他很久了,现在写一个系列来记录Thinkphp6.0的使用,我们现在从安装开始学习吧. 首先我们要确定Th ...