poj2947(高斯消元法解同余方程组)
题目链接:https://vjudge.net/problem/POJ-2065
题意:题目看着较复杂,实际上就是给了n个同余方程,解n个未知数。
思路:套高斯消元法的模板即可。
AC代码:
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cstdlib>
using namespace std; const int maxn=;
int T,equ,var,MOD,a[maxn][maxn],x[maxn];
char s[]; int gcd(int a,int b){
return b?gcd(b,a%b):a;
} int lcm(int a,int b){
return a/gcd(a,b)*b;
} void init(){
memset(x,,sizeof(x));
for(int i=;i<equ;++i){
int k=i+,t=;
for(int j=;j<var;++j){
a[i][j]=t;
t=t*k%MOD;
}
}
} int Gauss(){
int k=,LCM,ta,tb,tmp;
for(int col=;k<equ&&col<var;++k,++col){
int max_r=k;
for(int i=k+;i<equ;++i){
if(abs(a[i][col])>abs(a[max_r][col]))
max_r=i;
}
if(max_r!=k){
for(int i=col;i<var+;++i)
swap(a[max_r][i],a[k][i]);
}
if(!a[k][col]){
--k;
continue;
}
for(int i=k+;i<equ;++i){
if(!a[i][col]) continue;
LCM=lcm(a[i][col],a[k][col]);
ta=LCM/a[i][col];
tb=LCM/a[k][col];
if(a[i][col]*a[k][col]<) tb=-tb;
for(int j=col;j<var+;++j){
a[i][j]=((a[i][j]*ta-a[k][j]*tb)%MOD+MOD)%MOD;
}
}
}
for(int i=k;i<equ;++i){
if(a[i][var])
return -;
}
if(k<var){
return var-k;
}
for(int i=equ-;i>=;--i){
tmp=a[i][var];
for(int j=i+;j<var;++j){
if(!a[i][j]) continue;
tmp-=a[i][j]*x[j];
tmp=(tmp%MOD+MOD)%MOD;
}
while(tmp%a[i][i]!=) tmp+=MOD;
x[i]=(tmp/a[i][i])%MOD;
}
return ;
} int main(){
scanf("%d",&T);
while(T--){
scanf("%d%s",&MOD,s);
equ=var=strlen(s);
init();
for(int i=;i<equ;++i){
int t;
if(s[i]=='*') t=;
else t=s[i]-'a'+;
a[i][var]=t;
}
Gauss();
for(int i=;i<var;++i){
printf("%d",x[i]);
if(i!=var-) printf(" ");
}
printf("\n");
}
return ;
}
poj2947(高斯消元法解同余方程组)的更多相关文章
- (模板)poj2947(高斯消元法解同余方程组)
题目链接:https://vjudge.net/problem/POJ-2947 题意:转换题意后就是已知m个同余方程,求n个变量. 思路: 值得学习的是这个模板里消元用到lcm的那一块.注意题目输出 ...
- hdu 5755 Gambler Bo (高斯消元法解同余方程组)
http://acm.hdu.edu.cn/showproblem.php?pid=5755 题意: n*m矩阵,每个格有数字0/1/2 每选择一个格子,这个格子+2,4方向相邻格子+1 如何选择格子 ...
- C++实现,拓展中国剩余定理——解同余方程组(理论证明和代码实现)
拓展中国剩余定理 前言 记得半年前还写过关于拓展中国剩余定理的博客...不过那时对其理解还不是比较深刻,写的也比较乱. 于是趁学校复习之机,再来重温一下拓展中国剩余定理(以下简称ExCRT) 记得半年 ...
- poj 2947 Widget Factory (高斯消元解同余方程组+判断无解、多解)
http://poj.org/problem?id=2947 血泪史: CE:poj的string类型要加string库,swap不能直接交换数组 WA: x[m-1]也有可能<3啊O(≧口≦) ...
- HDU1573:X问题(解一元线性同余方程组)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=1573 题目解析;HDU就是坑,就是因为n,m定义成了__int64就WAY,改成int就A了,无语. 这题 ...
- HDU3579:Hello Kiki(解一元线性同余方程组)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=3579 题目解析:求一元线性同余方程组的最小解X,需要注意的是如果X等于0,需要加上方程组通解的整数区间lc ...
- POJ 2947-Widget Factory(高斯消元解同余方程式)
题目地址:id=2947">POJ 2947 题意:N种物品.M条记录,接写来M行,每行有K.Start,End,表述从星期Start到星期End,做了K件物品.接下来的K个数为物品的 ...
- HDU1573 X问题【一元线性同余方程组】
题目链接: http://acm.hdu.edu.cn/showproblem.php? pid=1573 题目大意: 求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X ...
- AcWing 204. 表达整数的奇怪方式 (线性同余方程组)打卡
给定2n个整数a1,a2,…,ana1,a2,…,an和m1,m2,…,mnm1,m2,…,mn,求一个最小的整数x,满足∀i∈[1,n],x≡mi(mod ai)∀i∈[1,n],x≡mi(mod ...
随机推荐
- 我想查看数据库名,输入命令:select name from v$database;为什么会说表和视图不存在
你看一下你连接数据库的用户,需要有DBA权限才能看到这个表.
- BZOJ 4241: 历史研究 ( 回 滚 )
题目: 链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4241 题意:给你一个长度为n序列,m次查询,每次询问 一段区间 最大的 a[ i ...
- tarjan模板(带注释)
//dfsn[x]记录x节点有没有被访问过,有,则是第几个 //lowlink[x]记录x能到的祖先中编号最小的 //dfs_clock是个编号累计器 //scc记录一个 inline void df ...
- D3DFVF_XYZ和D3DFVF_XYZRHW的区别
D3DFVF_XYZ和D3DFVF_XYZRHW的区别是:1.D3DXYZ默认的坐标系统用户区中心是 (0,0) 而rhw的左上角是 (0,0)2.D3DXYZ默认的非光照的,而RHW默认就是高洛夫的 ...
- Java Collection Framework 备忘点
最顶端是两个接口,集合和映射—— Collection<T> / Map<K, V> List 列表 保持插入顺序 ArrayList 擅长随机读 LinkedList ...
- adb的一些命令
adb pull <手机路径> <本机路径> 从手机中拉取信息到本地电脑上 adb push <本机路径> <手机路径> 从本地电脑推送信息到手机上
- js中判断对象类型的几种方法
我们知道,JavaScript中检测对象类型的运算符有:typeof.instanceof,还有对象的constructor属性: 1) typeof 运算符 typeof 是一元运算符,返回结果是一 ...
- Installing the Solidity Compiler¶
Versioning¶ Solidity versions follow semantic versioning and in addition to releases, nightly develo ...
- Antecedent Membership Functions相关资料
属于模糊控制领域 前件隶属函数(Antecedent Membership Functions) 基于模糊近似的强化学习方法研究 - 豆丁网 https://www.docin.com/p-13022 ...
- Servlet的运行原理