Design and Analysis of Algorithms_Fundamentals of the Analysis of Algorithm Efficiency
I collect and make up this pseudocode from the book:
<<Introduction to the Design and Analysis of Algorithms_Second Edition>> _ Anany Levitin
Note that throughout the paper, we assume that inputs to algorithms fall within their specified ranges and hence require no verfication. When implementing algorithms as programs to be used in actual applications, you should provide such verfications.
About pseudocode: For the sake of simplicity, we omit declarations of variables and use indentation to show the scope of such statements as for, if and while. As you saw later, we use an arrow <- for the assignment operation and two slashes // for comments.
Algorithm SequentialSearch(A[..n-], k)
// Searches for a given value in a given array by sequential search
// Input: An array A[0..n-1] and a search key K
// Output: The index of the first element of A that matches K or -1 if there are no matching elements
i <-
while i < n and A[i] ≠ K do
i <- i+
if i < n return i
else return - Algorithm MaxElement(A[..n-])
// Determines the value of the largest element in a given array
// Input: An array A[0..n-1] of real numbers
// Output: The value of the largest element in A
maxval <- A[]
for i <- to n- do
if A[i] > maxval
maxval <- A[i]
return maxval Algorithm UniqueElements(A[..n-])
// Determines whether all the elements in a given array are distinct
// Input: An array A[0..n-1]
// Output: Returns "true" if all the elements in A are distinct and "false" otherwise
for i <- to n- do
for j <- i+ to n- do
if A[i] = A[j]
return false
return true Given two n-by-n matrices A and B, we hava a definition-based algorithm for computer their product C = AB. By definition , C is an n-by-n matrix whose elements are computed as the scalar(dot) products of the rows of matrix A and the columns of matrix B: where C[i, j] = A[i, 0]B[0, j] + ... + A[i, k]B[k, j] + A[i, n-1]B[n-1, j] for every pair of indices 0 ≤ i, j ≤ n-1.
Algorithm MatrixMultiplication(A[0..n-1, 0..n-1], B[0..n-1, 0..n-1])
// Multiplies two n-by-n matrices by the definition-based algorithm
// Input: Two n-by-n matrices A and B
// Output: Matrix C = AB
for i <- to n- do
for j <- to n- do
C[i, j] <- 0.0
for k <- to n- do
C[i, j] <- C[i, j] + A[i, k]*B[k, j]
return C
Improve the implementation of the matrix multiplication algorithm by reduce the number of addtions made by the algorithm. What effect will this change hava on the algorithm's efficiency?
Replace the body of j loop by follwing fragment:
C[i,j] <- A[i,]*B[,j]
for k <- to n- do
C[i,j] <- C[i,j] + A[i,k]*B[k,j]
This will decrease the number of additions from n^3 to n^3-n^2, but the number of multiplications will still be n^3. The algorithm's efficiency class will remain cubic.
The following algorithm finds the number of binary digits in the binary representation of a position decimal integer. The exact formula for the number of times the comparision n > 1 will be executed is actually ⌊log2n⌋ + 1
Algorithm Binary(n)
// Input: A position decimal integer n
// Output: The number of binary digits in n's binary representation
count <-
while n > do
count <- count +
n <- ⌊n/⌋
Then we investigate a recursive version of the algorithm:
Algorithm BinRec(n)
// Input: A positive decimal integer n
// Output: The number of binary digits in n's binary representation
if n = return
else return BinRec(⌊n/⌋) + 1
Algorithm Mystery(n)
// Input: A nonnegative integer n
S <-
for i <- to n do
S <- S + i*i
return S Algorithm Secret(A[..n-])
// Input: An array A[0..n-1] of n real numbers
minval <- A[]; maxval <- A[]
for i <- to n- do
if A[i] < minval
minval <- A[i]
if A[i] > maxval
maxval <- A[i]
return maxval - minval The following algorithm return "true" if its input matrix is symmetric and "false" if it is not.
Algorithm Enigma(A[..n-, ..n-])
// Input: A matrix A[0..n-1, 0..n-1] of real numbers
for i <- to n- do
for j <- i+ to n- do
if A[i,j] ≠ A[j,i]
return false
return true Algorithm F(n)
// Computers n! recursively
// Input: A nonnegative integer n
// Output: The value of n!
if n = return
else return F(n-)*n Consider the following recursive algorithm for computing the sum of the first n cubes:
Algorithm S(n)
// Input: A positive integer n
// Output: The sum of the first n cubes
if n = return
else return S(n-) + n*n*n
Here is a pseudocode for the nonrecursive option:
Algorithm NonrecS(n)
// Computes the sum of the first n cubes nonrecursively
// Input: A positive integer n
// Output: The sum of the first n cubes.
S <-
for i <- to n do
S <- S + i*i*i
return S
The number of multiplications made both of this two algorithm will be 2(n-1), but the nonrecursive version doesn't carry the time and space overhead associated with the recursion's stack. Algorithm Power(n)
// Computes 2^n recursively by the formula 2^n = 2^(n-1) + 2^(n-1)
// Input: A nonnegative integer n
// Output: Returns 2^n
if n = return
else return Power(n-) + Power(n-) The following algorithm computes the value of the smallest element in a given array.
Algorithm Min1(A[..n-])
// Input: An array A[0..n-1] of real numbers
if n = return A[]
else temp <- Min1(A[..n-])
if temp ≤ A[n-] return temp
else return A[n-]
Consider another algorithm for solving the problem, which recursively divides an array into two halves: call Min2(A[0..n-1])
Algorithm Min2(A[l..r])
if l = r return A[l]
else
temp1 <- Min2(A[l..⌊(l+r)/⌋])
temp2 <- Min2(A[⌊(l+r)/⌋+..r])
if temp1 ≤ temp2
return temp1
else
return temp2
We can prove that both of them for the number of key comparisons is n-1.
A simple standard scan through the array in question requires the same number of key comparisons while avoiding the overhead associated with recursive calls. It is clear, however, that any algorithm for this problem must be in Ω(n). Algorithm F(n)
// Computes the nth Fibonacci number recursively by using its definition
// Input: A nonnegative integer n
// Output: The nth Fibonacci number
if n ≤ return n
else return F(n-) + F(n-) Algorithm Fib(n)
// Computes the nth Fibonacci number iteratively by using its definition
// Input: A nonnegative integer n
// Output: The nth Fibonacci number
F[] <- ; F[] <-
for i <- to n do
F[i] <- F[i-] + F[i-]
return F[n]
Algorithm Fib2(n)
// Computes the n-th Fibonacci number using just two variables
// Input: A nonnegative integer n
// Output: The n-th Fibonacci number
u <- ; v <-
for i <- to n do
v <- v + u
u <- v - u
if n = return
else return v The following well-known sorting algorithm with a counter inserted to count the number of key comparisons.
Algorithm SortAnalysis(A[..n-])
// Input: An array A[0..n-1] of n orderable elements
// Output: The total number of key comparisons made
count <-
for i <- to n- do
v <- A[i]
j <- i-
while j ≥ and A[j] > v do
count <- count+
A[j+] <- A[j]
j <- j-
if j ≥ count <- count+
A[j+] <- v
return count new words:
sequential: 顺序的 formula: 公式 symmetric: 对称的
cubic: 立方的 investigate: 调查;研究 halves: 两等份 (End_xpjiang).
Design and Analysis of Algorithms_Fundamentals of the Analysis of Algorithm Efficiency的更多相关文章
- 【转载】Analysis Service Tabular Model #002 Analysis services 的结构:一种产品 两个模型
Analysis Service 2012 Architecture – One Product, Two Models 在之前SQL Server 2008 R2 版本中的分析服务实际上只有一个版本 ...
- 【Static Program Analysis - Chapter 3】Type Analysis
类型分析,个人理解就是(通过静态分析技术)分析出代码中,哪些地方只能是某种或某几种数据类型,这是一种约束. 例如,给定一个程序: 其中,我们可以很直接地得到一些约束: 最后,经过简化可以得到: 对 ...
- malware analysis、Sandbox Principles、Design && Implementation
catalog . 引言 . sandbox introduction . Sandboxie . seccomp(short for secure computing mode): API级沙箱 . ...
- PTPX中的time_based analysis
根据VCD文件的type,PTPX支持instantaneous peak power analysis和cycle_accurate peak power analysis. Time-Based ...
- Top 40 Static Code Analysis Tools
https://www.softwaretestinghelp.com/tools/top-40-static-code-analysis-tools/ In this article, I have ...
- Analysis Services OLAP 概述2
在DW/BI系统中,关系型数据库是存储和管理数据的最佳场所.但是关系数据库本身的智能化程度不够.关系型数据库缺乏如下功能: 丰富的元数据,帮助用户浏览数据和创建查询. 强大的分析计算和函数,在对上下文 ...
- Andrew Ng机器学习公开课笔记–Principal Components Analysis (PCA)
网易公开课,第14, 15课 notes,10 之前谈到的factor analysis,用EM算法找到潜在的因子变量,以达到降维的目的 这里介绍的是另外一种降维的方法,Principal Compo ...
- BA Practice Lead Handbook 1 - Why Is Business Analysis Taking The World By Storm?
The articles in this series are focused on individual Business Analysts and their managers. https:// ...
- Computational Methods in Bayesian Analysis
Computational Methods in Bayesian Analysis Computational Methods in Bayesian Analysis [Markov chain ...
随机推荐
- 解决rand()伪随机数
利用time改变种子 例: #include <stdlib.h> #include <stdio.h> #include <time.h>//使用当前时钟做种子 ...
- 同步、更新、下载Android Source & SDK from 国内镜像站(转载)
同步.更新.下载Android Source & SDK from 国内镜像站 转自: 同步.更新.下载Android Source & SDK from 国内镜像站 Download ...
- BlockingQueue深入分析(转)
1.BlockingQueue定义的常用方法如下 抛出异常 特殊值 阻塞 超时 插入 add(e) offer(e) put(e) offer(e,time,unit) 移除 remove() p ...
- 1.0 Quartz 2D 简介
本文并非最终版本,如有更新或更正会第一时间置顶,联系方式详见文末 如果觉得本文内容过长,请前往本人 “简书” Quartz2D须知: (1)Quartz 2D是苹果官方的二维绘图引擎,同时支持 ...
- bzoj2141排队(辣鸡但是好写的方法)
题意很明确,也非常经典: 一个支持查询 区间中比k大的数的个数 并且支持单点修改的序列 ——因为题意可以转化为:查询这两个数中比后者大的个数.比后者小的个数.比前者大的个数.比前者小的个数(根据这4个 ...
- 在C#用HttpWebRequest中发送GET/HTTP/HTTPS请求
通用辅助类 下面是我编写的一个辅助类,在这个类中采用了HttpWebRequest中发送GET/HTTP/HTTPS请求,因为有的时候需 要获取认证信息(如Cookie),所以返回的是HttpWeb ...
- 免费领取百度云盘2048G永久空间,永久离线下载特权
百度云盘和360云盘之间的竞争可谓争锋相对,前段时间,百度和360就网盘免费都采取了自己的措施,最终,360一锤定音,直接免费送36T,并且如果你超过了36T的容量,还可以自动免费扩容! 可参看文章: ...
- 制作IOS企业版App网页扫描二维码下载安装
有时候我们需要在XX网站的主页上去扫描二维码下载,那么ios开发中如何做到这一点呢. 我给大家解答一下,这也是在最近工作中用到的部分,在网上了解了一些. 下面给大家分解一下步骤: 1.Plist 和 ...
- vmware 虚拟机中添加新网卡无配置文件
系统:centos 6/7 问题: 为虚拟机添加新网卡后,/etc/sysconfig/network-scripts/下无配置文件ifcfg-eth1 #ip addr //显示存在eth ...
- Android 四大护法之一 Service
1.Service的概念 Service是Android 四大组件之一,是默认没有界面的运行于后台的服务程序.Service的开启方式分为启动式服务(startService)和绑定式服务(bindS ...