Lagrange 对偶问题

定义其的对偶问题:

Lagrange函数

考虑线性规划问题


若取集合约束D={x|x≥0},则该线性规划问题的Lagrange函数为

线性规划的对偶问题为:

对偶定理
原问题:

对偶问题:

定理1(弱对偶定理)

LP对偶问题的基本性质
原问题(P) 对偶问题(D)

定理1(弱对偶定理)

定理2(最优性准则)

证明:

定理3(强对偶定理)
若(P),(D)均有可行解,则(P),(D)均有最优解,且(P),(D)的最优目标函数值相等.
证明:因为(P),(D)均有可行解,由推论2,推论3知,(P)的目标函数值在其可行域内有下界, (D)的目标函数值在其可行域内有上界, 故则(P),(D)均有最优解.

参考:http://wenku.baidu.com/view/1ae29f1119e8b8f67d1cb95b

对偶理论、拉格朗日对偶问题、LP线性规划对偶性质的更多相关文章

  1. 带约束优化问题 拉格朗日 对偶问题 KKT条件

    转自:七月算法社区http://ask.julyedu.com/question/276 咨询:带约束优化问题 拉格朗日 对偶问题 KKT条件 关注 | 22 ... 咨询下各位,在机器学习相关内容中 ...

  2. LP线性规划求解 之 单纯形 算法

    LP线性规划求解 之 单纯形 算法 认识-单纯形 核心: 顶点旋转 随机找到一个初始的基本可行解 不断沿着可行域旋转(pivot) 重复2,直到结果不能改进为止 案例-过程 以上篇的case2的松弛型 ...

  3. LP线性规划初识

    认识LP 线性规划(Linear Programming) 特指目标函数和约束条件皆为线性的最优化问题. 目标函数: 多个变量形成的函数 约束条件: 由多个等式/不等式形成的约束条件 线性规划: 在线 ...

  4. SVM(支持向量机)(二)—Lagrange Duality(拉格朗日对偶问题)

    (整理自AndrewNG的课件,转载请注明.整理者:华科小涛@http://www.cnblogs.com/hust-ghtao/) SVM有点让人头疼,但还是要弄明白.把这一大块搞懂了,会很有成就感 ...

  5. SVM小白教程(2):拉格朗日对偶

    在上一篇文章中,我们推导出了 SVM 的目标函数: \[ \underset{(\mathbf{w},b)}{\operatorname{min}} ||\mathbf{w}|| \\ \operat ...

  6. 【Python代码】混合整数规划MIP/线性规划LP+python(ortool库)实现

    目录 相关知识点 LP线性规划问题 MIP混合整数规划 MIP的Python实现(Ortool库) assert MIP的Python实现(docplex库) 相关知识点 LP线性规划问题 Linea ...

  7. 04-拉格朗日对偶问题和KKT条件

    04-拉格朗日对偶问题和KKT条件 目录 一.拉格朗日对偶函数 二.拉格朗日对偶问题 三.强弱对偶的几何解释 四.鞍点解释 4.1 鞍点的基础定义 4.2 极大极小不等式和鞍点性质 五.最优性条件与 ...

  8. SVM及其对偶

    引自 http://my.oschina.net/wangguolongnk/blog/111349 1. 支持向量机的目的是什么? 对于用于分类的支持向量机来说,给定一个包含正例和反例(正样本点和负 ...

  9. 拉格朗日对偶性(Lagrange duality)

    目录 拉格朗日对偶性(Lagrange duality) 1. 从原始问题到对偶问题 2. 弱对偶与强对偶 3. KKT条件 Reference: 拉格朗日对偶性(Lagrange duality) ...

随机推荐

  1. 尽快写完Math!

    (1)Arranging Coins 解题思路一:这个想法是关于二次方程,得到算术和的公式是sum =(x + 1)* x / 2 所以对于这个问题,如果我们知道和,那么我们可以知道x =(-1 + ...

  2. QT征程之初识qt

    下载 https://www.qt.io/cn/download-open-source/     下载QT离线安装包 Qt 5.5.1 for Linux 32-bit (546 MB) (info ...

  3. android添加第三方字体并设置的简单使用

    1.java文件 package lpc.com.project006; import android.app.Activity; import android.content.res.AssetMa ...

  4. extern extern “C”用法详解

    1.extern 修饰一个变量,告诉编译器这个变量在其他地方定义,编译器不会给出变量未定义的警告. extern tells the compiler that the variable is def ...

  5. 课堂Beta发布140字评论

    Beta发布140字评论: 第一组:飞天小女警 此项目组的功能是礼物挑选,创意十足,用户只要一听名字便会被深深吸引,并且页面设计感,时尚感十足,不断吸引客户的眼球,而且发布到云服务器上面. 第二组:金 ...

  6. Android开发学习---sharedpreference的使用

    在前面文章中,为了使数据回显,使用的技术思路是,首先,将数据持久化写到ROM或者SDCard中,其中name和password以":"分隔;然后,将数据记取出来,再用split方法 ...

  7. Oracle 分页原理

    oracle rownum 及分页处理的使用方法 在实际应用中我们经常碰到这样的问题,比如一张表比较大,我们只要其中的查看其中的前几条数据,或者对分页处理数据.在这些情况下我们都需要用到rownum. ...

  8. 2、C语言关键字-auto register static

    文件限定符的作用: 1.auto : 局部变量,修饰的变量在栈中定义.动态内存,随着函数的结束,变量占用的内存空间也随之释放. 2.register : 寄存器变量,请求编译器将此变量存于cpu寄存器 ...

  9. NC nc5.x笔记(编辑中)

    一.设置卡片界面下 金额字段负数为红色! /** * 设置卡片界面下 金额字段负数为红色! */ private void repaintBodyMoneyColor(){ if(!isListPan ...

  10. <停车卫> 产品需求说明书 version 2.0

    <停车卫> 产品需求说明书 文档版本号: Version 2.0 文档编号: xxxx 文档密级: 归属部门/项目: 产品名: 停车卫 子系统名: 编写人: kina 编写日期: 2015 ...