Central heating
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 614   Accepted: 286

Description

Winter has come, but at the Ural State University heating is not turned on yet. There's one little problem: the University is heated only if all of the valves are opened. There are some technicians at the University. Each of them is responsible for one or more valves. There may be several technicians responsible for the same valve. When a technician gets an instruction to turn on the heating he goes round all of his valves and turns them. It means that if a valve was opened then he closes it, and if it was closed then he opens it. It is well known that every technician earns his money not in vain so it's impossible to replace any technician by any combination of other technicians. 
Your task is to determine who of the technicians is to get an instruction "to turn on the heating" in order to heat all the Ural State University. Note that there are N technicians and N valves at the University (1 <= N <= 250). 

Input

The first line of an input contains the number N. The next N lines contain lists of the valves in charge of each of the technicians. It means that a line number i + 1 contains numbers of the valves that the i-th technician is responsible for. Each list of valves is followed by –1.

Output

An output should contain a list of technicians' numbers sorted in ascending order. If several lists are possible, you should send to an output the shortest one. If it's impossible to turn on the heating at the University, you should write "No solution" .

Sample Input

4
1 2 -1
2 3 4 -1
2 -1
4 -1

Sample Output

1 2 3

Source

原题大意: 有n个人,n个阀门。给n组数,每i组一-1结束,代表第i个人管理这组数中正数编号的阀门。
              问:能否确定几个人,使得所有阀门都开着。
解题思路: 不知道为啥是高斯消元,明明线性代数用的比较多。
              由于同一个人,开偶数次与不开是一样的,开奇数次与开1次是一样的。
              于是对于一个人,只有两种情况,不开和开一次。
              既然如此,我们可以把每个人的状态做成n维列向量,再做成增广矩阵,如题中所示。
             1  0  0  0  |  1
             1  1  1  0  |  1
             0  1  0  0  |  1
             0  1  0  1  |  1
             这样,解这个增广矩阵就可以了。
             值得一提的是,原文中有 it's impossible to replace any technician by any combination of other technicians. 
             什么意思呢,也就是说,这个系数矩阵分成向量后是线性无关的。
             也就是说,系数矩阵是n!必定有唯一的解。于是就可以无视原题中的无解和多解情况了。
#include<stdio.h>
#include<string.h>
int a[270][270],ans[270],n;
void swap(int *a,int *b)
{
int cnt=0,c[270],i;
for(cnt=1;cnt<=n+1;++cnt)
{
c[cnt]=*a;
*a++=*(b+cnt-1);
}
for(i=1;i<=n+1;++i) *b++=c[i];
}
void XOR(int col,int *a,int *b)
{
int i;
for(i=col;i<=n+1;++i) *b++^=*a++;
}
void init()
{
int col=0,x,i;
for(i=1;i<=n;++i) a[i][n+1]=1;
for(col=1;col<=n;++col) while(~scanf("%d",&x)&&x!=-1) a[x][col]=1;
}
void solved()
{
int col,row,node;
for(col=1;col<=n;++col)
{
node=0;
for(row=col;row<=n;++row)
{
if(a[row][col])
{
node=row;
break;
}
}
if(node) swap(a[node]+1,a[col]+1);
for(row=col+1;row<=n;++row)
if(a[row][col]) XOR(col,a[col]+col,a[row]+col);
}
}
void target()
{
int i,j;
for(i=n;i>=1;--i)
{
ans[i]=a[i][n+1];
for(j=n-1;j>=1;--j) a[j][n+1]^=(ans[i] & a[j][i]);
}
int first=1;
for(i=1;i<=n;++i) if(ans[i]) printf("%d ",i);
printf("\n");
}
int main()
{
int t,x,col=0;
scanf("%d",&n);
init();
solved();
target();
return 0;
}

  

             

[高斯消元] POJ 2345 Central heating的更多相关文章

  1. poj 2345 Central heating

    Central heating Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 678   Accepted: 310 Des ...

  2. POJ 2345 Central heating(高斯消元)

    [题目链接] http://poj.org/problem?id=2345 [题目大意] 给出n个开关和n个人,每个人可以控制一些开关,现在所有的开关都是关着的 一个指令可以让一个人掰动所有属于他控制 ...

  3. 数学 --- 高斯消元 POJ 1830

    开关问题 Problem's Link: http://poj.org/problem?id=1830 Mean: 略 analyse: 增广矩阵:con[i][j]:若操作j,i的状态改变则con[ ...

  4. 【POJ】2947 Widget Factory(高斯消元)

    http://poj.org/problem?id=2947 各种逗啊..还好1a了.. 题意我就不说了,百度一大把. 转换为mod的方程组,即 (x[1,1]*a[1])+(x[1,2]*a[2]) ...

  5. POJ 1681---Painter's Problem(高斯消元)

    POJ   1681---Painter's Problem(高斯消元) Description There is a square wall which is made of n*n small s ...

  6. POJ 3185 The Water Bowls(高斯消元-枚举变元个数)

    题目链接:http://poj.org/problem?id=3185 题意:20盏灯排成一排.操作第i盏灯的时候,i-1和i+1盏灯的状态均会改变.给定初始状态,问最少操作多少盏灯使得所有灯的状态最 ...

  7. 【POJ 1830】 开关问题 (高斯消元)

    开关问题   Description 有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为 ...

  8. POJ 1222 EXTENDED LIGHTS OUT(高斯消元)

    [题目链接] http://poj.org/problem?id=1222 [题目大意] 给出一个6*5的矩阵,由0和1构成,要求将其全部变成0,每个格子和周围的四个格子联动,就是说,如果一个格子变了 ...

  9. POJ 1222 EXTENDED LIGHTS OUT(高斯消元)题解

    题意:5*6的格子,你翻一个地方,那么这个地方和上下左右的格子都会翻面,要求把所有为1的格子翻成0,输出一个5*6的矩阵,把要翻的赋值1,不翻的0,每个格子只翻1次 思路:poj 1222 高斯消元详 ...

随机推荐

  1. 走进java对象的门口

    从题目中可以看出来,今天只是java面向对象的入门级探讨.看看今天的内容.

  2. com.opensymphony.xwork2.ognl.OgnlValueStack] - target is null for setProperty(null, "emailTypeNo", [Ljava.lang.String;@6f205e]

    情况1,查询结果未转换为与前台交互的实体类DTO 实体类:EmailTypeDto package com.manage.email.dto; public class EmailTypeDto { ...

  3. exel按行查找或按列查找

    表1:sheet1 1). 在表1中找出ID号位0928的基因相对应的数值 在相对应的单元格输入:B2=VLOOKUP(A:A,Sheet1!A:D,3,0) 既可以得到: ············· ...

  4. 启动tomcat部署项目时 ContainerBase.addChild: start:

    严重: ContainerBase.addChild: start: org.apache.catalina.LifecycleException: Failed to start component ...

  5. 浅析word-break work-wrap区别

    word-break:[断词] 定义:规定自动换行的处理方法.   注:通过word-break使用,可以实现让浏览器在任意位置换行. 语法:word-break: normal|break-all| ...

  6. Codeforces Round #389 (Div. 2, Rated, Based on Technocup 2017 - Elimination Round 3) D. Santa Claus and a Palindrome STL

    D. Santa Claus and a Palindrome time limit per test 2 seconds memory limit per test 256 megabytes in ...

  7. 转行做开发的Wiki:找好方向

    案 我是一个从建筑行业转行过来的后端工程师,转行来写代码了.最近发现经常有同学和网上的朋友问我一些转行的问题,零零散散地回答莫不如写一篇文章,以后回答此类问题就方便多了. 我的专业是给排水,属于非常传 ...

  8. get传中文参数乱码解决方法

    通常我们前端不同页面之间传参数用得最多的方法就是get方法:在url后面加上参数.例如:www.test.com?id=1&name=hello. 英文和字母很好处理,但是如果有的参数值为中文 ...

  9. SVN使用手册

    安装Tortoise SVN Icon TortoiseSVN 1.7版本及之后与之前的版本有很大的变化,主要区别如下: 1.7以前的版本会在每个目录中生成一个.svn的隐藏目录.1.7及以后的版本, ...

  10. iOS runtime 知识点整理

    // ------ 动态创建类, 添加成员变量, 赋值并调用动态添加的方法 ------- @implementation ViewController - (void)viewDidLoad { [ ...