Central heating
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 614   Accepted: 286

Description

Winter has come, but at the Ural State University heating is not turned on yet. There's one little problem: the University is heated only if all of the valves are opened. There are some technicians at the University. Each of them is responsible for one or more valves. There may be several technicians responsible for the same valve. When a technician gets an instruction to turn on the heating he goes round all of his valves and turns them. It means that if a valve was opened then he closes it, and if it was closed then he opens it. It is well known that every technician earns his money not in vain so it's impossible to replace any technician by any combination of other technicians. 
Your task is to determine who of the technicians is to get an instruction "to turn on the heating" in order to heat all the Ural State University. Note that there are N technicians and N valves at the University (1 <= N <= 250). 

Input

The first line of an input contains the number N. The next N lines contain lists of the valves in charge of each of the technicians. It means that a line number i + 1 contains numbers of the valves that the i-th technician is responsible for. Each list of valves is followed by –1.

Output

An output should contain a list of technicians' numbers sorted in ascending order. If several lists are possible, you should send to an output the shortest one. If it's impossible to turn on the heating at the University, you should write "No solution" .

Sample Input

4
1 2 -1
2 3 4 -1
2 -1
4 -1

Sample Output

1 2 3

Source

原题大意: 有n个人,n个阀门。给n组数,每i组一-1结束,代表第i个人管理这组数中正数编号的阀门。
              问:能否确定几个人,使得所有阀门都开着。
解题思路: 不知道为啥是高斯消元,明明线性代数用的比较多。
              由于同一个人,开偶数次与不开是一样的,开奇数次与开1次是一样的。
              于是对于一个人,只有两种情况,不开和开一次。
              既然如此,我们可以把每个人的状态做成n维列向量,再做成增广矩阵,如题中所示。
             1  0  0  0  |  1
             1  1  1  0  |  1
             0  1  0  0  |  1
             0  1  0  1  |  1
             这样,解这个增广矩阵就可以了。
             值得一提的是,原文中有 it's impossible to replace any technician by any combination of other technicians. 
             什么意思呢,也就是说,这个系数矩阵分成向量后是线性无关的。
             也就是说,系数矩阵是n!必定有唯一的解。于是就可以无视原题中的无解和多解情况了。
#include<stdio.h>
#include<string.h>
int a[270][270],ans[270],n;
void swap(int *a,int *b)
{
int cnt=0,c[270],i;
for(cnt=1;cnt<=n+1;++cnt)
{
c[cnt]=*a;
*a++=*(b+cnt-1);
}
for(i=1;i<=n+1;++i) *b++=c[i];
}
void XOR(int col,int *a,int *b)
{
int i;
for(i=col;i<=n+1;++i) *b++^=*a++;
}
void init()
{
int col=0,x,i;
for(i=1;i<=n;++i) a[i][n+1]=1;
for(col=1;col<=n;++col) while(~scanf("%d",&x)&&x!=-1) a[x][col]=1;
}
void solved()
{
int col,row,node;
for(col=1;col<=n;++col)
{
node=0;
for(row=col;row<=n;++row)
{
if(a[row][col])
{
node=row;
break;
}
}
if(node) swap(a[node]+1,a[col]+1);
for(row=col+1;row<=n;++row)
if(a[row][col]) XOR(col,a[col]+col,a[row]+col);
}
}
void target()
{
int i,j;
for(i=n;i>=1;--i)
{
ans[i]=a[i][n+1];
for(j=n-1;j>=1;--j) a[j][n+1]^=(ans[i] & a[j][i]);
}
int first=1;
for(i=1;i<=n;++i) if(ans[i]) printf("%d ",i);
printf("\n");
}
int main()
{
int t,x,col=0;
scanf("%d",&n);
init();
solved();
target();
return 0;
}

  

             

[高斯消元] POJ 2345 Central heating的更多相关文章

  1. poj 2345 Central heating

    Central heating Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 678   Accepted: 310 Des ...

  2. POJ 2345 Central heating(高斯消元)

    [题目链接] http://poj.org/problem?id=2345 [题目大意] 给出n个开关和n个人,每个人可以控制一些开关,现在所有的开关都是关着的 一个指令可以让一个人掰动所有属于他控制 ...

  3. 数学 --- 高斯消元 POJ 1830

    开关问题 Problem's Link: http://poj.org/problem?id=1830 Mean: 略 analyse: 增广矩阵:con[i][j]:若操作j,i的状态改变则con[ ...

  4. 【POJ】2947 Widget Factory(高斯消元)

    http://poj.org/problem?id=2947 各种逗啊..还好1a了.. 题意我就不说了,百度一大把. 转换为mod的方程组,即 (x[1,1]*a[1])+(x[1,2]*a[2]) ...

  5. POJ 1681---Painter's Problem(高斯消元)

    POJ   1681---Painter's Problem(高斯消元) Description There is a square wall which is made of n*n small s ...

  6. POJ 3185 The Water Bowls(高斯消元-枚举变元个数)

    题目链接:http://poj.org/problem?id=3185 题意:20盏灯排成一排.操作第i盏灯的时候,i-1和i+1盏灯的状态均会改变.给定初始状态,问最少操作多少盏灯使得所有灯的状态最 ...

  7. 【POJ 1830】 开关问题 (高斯消元)

    开关问题   Description 有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为 ...

  8. POJ 1222 EXTENDED LIGHTS OUT(高斯消元)

    [题目链接] http://poj.org/problem?id=1222 [题目大意] 给出一个6*5的矩阵,由0和1构成,要求将其全部变成0,每个格子和周围的四个格子联动,就是说,如果一个格子变了 ...

  9. POJ 1222 EXTENDED LIGHTS OUT(高斯消元)题解

    题意:5*6的格子,你翻一个地方,那么这个地方和上下左右的格子都会翻面,要求把所有为1的格子翻成0,输出一个5*6的矩阵,把要翻的赋值1,不翻的0,每个格子只翻1次 思路:poj 1222 高斯消元详 ...

随机推荐

  1. build/envsetup.sh 生成的命令详解表

    参考: https://wiki.cyanogenmod.org/w/Envsetup_help 它是一个.sh文件,用source后就生成android编译相关函数,具体如下. 速查 Invokin ...

  2. 逻辑回归算法的原理及实现(LR)

    Logistic回归虽然名字叫"回归" ,但却是一种分类学习方法.使用场景大概有两个:第一用来预测,第二寻找因变量的影响因素.逻辑回归(Logistic Regression, L ...

  3. hive1.2.1实战操作电影大数据!

    我采用的是网上的电影大数据,共有3个文件,movies.dat.user.dat.ratings.dat.分别有3000/6000和1百万数据,正好做实验. 下面先介绍数据结构: RATINGS FI ...

  4. Javascript是单线程的深入分析

    本来想总结一下的,网上却发现有人已经解释的很清楚了,特转过来. 这也解释了为什么在用自动化测试工具来运行dumrendtree时设定的超时和测试case设定的超时的关联性. 面试的时候发现99%的童鞋 ...

  5. CentOS6.5安装Nginx

    1.安装prce(重定向支持)和openssl(https支持,如果不需要https可以不安装.) yum -y install pcre* yum -y install openssl* 2.下载n ...

  6. log4j PatternLayout 输出解析

    以下是PatternLayout.class源码的文档介绍: A flexible layout configurable with pattern string. This code is know ...

  7. Dom 概览

    前言 我们已经接触并使用了很多api去操作html文档,例如:appendChild,getElementById, 等等.但是,每当我在浏览器输入document,window 按下回车,会发现还有 ...

  8. 采用dom4j和反射模拟Spring框架的依赖注入功能

    Spring的依赖注入是指将对象的创建权交给Spring框架,将对象所依赖的属性注入进来的行为.在学习了dom4j后,其实也可以利用dom4j和反射做一个小Demo模拟Spring框架的这种功能.下面 ...

  9. hadoop启动是常见小问题

    1.先su进入root账户,然后 service iptables stop //关闭防火墙 start-all.sh //启动 2.启动是会显示,如果出错日志保存路径!!!基本所有问题都要去这些日志 ...

  10. LoadLibrary失败,GetLastError MOD_NOT_FOUND

    即使传入的.dll文件存在,也可能返回这个错误.因为加载的DLL库可能以来其他库,尤其是编译器的dll. 以腾讯的debug版libtim.dll为例:如果没有msvcr100d.dll和msvcp1 ...