洛谷 P2057 [SHOI2007]善意的投票 解题报告
P2057 [SHOI2007]善意的投票
题目描述
幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉。对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神。虽然每个人都有自己的主见,但是为了照顾一下自己朋友的想法,他们也可以投和自己本来意愿相反的票。我们定义一次投票的冲突数为好朋友之间发生冲突的总数加上和所有和自己本来意愿发生冲突的人数。
我们的问题就是,每位小朋友应该怎样投票,才能使冲突数最小?
输入输出格式
输入格式:
文件的第一行只有两个整数n,m,保证有2≤n≤300,1≤m≤n(n-1)/2。其中n代表总人数,m代表好朋友的对数。文件第二行有n个整数,第i个整数代表第i个小朋友的意愿,当它为1时表示同意睡觉,当它为0时表示反对睡觉。接下来文件还有m行,每行有两个整数i,j。表示i,j是一对好朋友,我们保证任何两对i,j不会重复。
输出格式:
只需要输出一个整数,即可能的最小冲突数。
说明
2≤n≤300,1≤m≤n(n-1)/2。
最小割模型题,一开始建模建费用流死活建不出来。
它有个名字,叫做二者取一式问题,感性描述为,将分为两类的点的点集一分为二,每类点需要代价达到另一集合或者不达到,其中一些点处于不同集合可能产生一些代价,求最小代价。
对应此题,我们把S代表0点集合,T代表1点集合,我们需要把点分别分进S,T所属集合,如果把朋友连的边切断,就说明他们分属两类集合,产生一个冲突,把原本要去S的点直接与S相连,如果这个边被切断,对应为被隔向另一个集合,产生冲突1。转换到最小割模型上了。
code:
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
const int N=502;
int to[N*N],next[N*N],w[N*N],cnt=1,head[N];
void add(int u,int v,int c)
{
next[++cnt]=head[u];to[cnt]=v;head[u]=cnt;w[cnt]=c;
}
int s[N],dep[N],tot=0,used[N],n,m,typ[N],pre[N];
queue <int > q;
bool bfs()
{
while(!q.empty()) q.pop();
q.push(0);
memset(dep,0,sizeof(dep));
dep[0]=1;
while(!q.empty()&&q.front()!=n+1)
{
int now=q.front();
q.pop();
for(int i=head[now];i;i=next[i])
{
if(!dep[to[i]]&&w[i])
{
dep[to[i]]=dep[now]+1;
q.push(to[i]);
}
}
}
return !q.empty();
}
int main()
{
scanf("%d%d",&n,&m);
int ans=0;
for(int i=1;i<=n;i++)
{
scanf("%d",typ+i);
if(typ[i]) add(0,i,1),add(i,0,0);
else add(i,n+1,1),add(n+1,i,0);
}
int u,v;
for(int i=1;i<=m;i++)
{
scanf("%d%d",&u,&v);
add(u,v,typ[u]),add(v,u,typ[v]);
}
while(bfs())
{
s[++tot]=0;
memset(used,0,sizeof(used));
memset(pre,0,sizeof(pre));
while(tot)
{
if(s[tot]==n+1)
{
for(int i=tot;i>1;i--)
{
w[pre[s[i]]]-=1;
w[pre[s[i]]^1]+=1;
}
tot=0;
ans++;
}
else
{
int u=s[tot];
for(int i=head[u];i;i=next[i])
{
if(dep[to[i]]==dep[u]+1&&w[i]&&!used[to[i]])
{
s[++tot]=to[i];
pre[s[tot]]=i;
used[to[i]]=1;
break;
}
}
if(u==s[tot]) tot--;
}
}
}
printf("%d\n",ans);
return 0;
}
2018.6.16
洛谷 P2057 [SHOI2007]善意的投票 解题报告的更多相关文章
- 洛谷$P2057\ [SHOI2007]$ 善意的投票 网络流
正解:网络流 解题报告: 传送门! $umm$看到每个人要么0要么1就考虑最小割呗,,,? 然后贡献有两种?一种是违背自己的意愿,一种是和朋友的意愿违背了 所以考虑开一排点分别表示每个人,然后$S$表 ...
- 洛谷P2057 [SHOI2007]善意的投票 题解
题目链接: https://www.luogu.org/problemnew/show/P2057 分析: 由0和1的选择我们直觉的想到0与S一堆,1与T一堆. 但是发现,刚开始的主意并不一定是最终的 ...
- [洛谷P2057][SHOI2007]善意的投票
题目大意:有$n(n\leqslant300)$个人,每个人可以选择$0$或$1$,每个人最开始有意愿,有$m(m\leqslant\dfrac{n(n-1)}2)$对好朋友.定义一次的冲突数为好朋友 ...
- [洛谷P2057][bzoj1934]善意的投票(最大流)
题目描述 幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉.对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神.虽然每个人都有自己的主见,但是为了照顾一下自己朋友的想法,他们也可以投和自己本来 ...
- P2057 [SHOI2007]善意的投票 (最大流)
题目 P2057 [SHOI2007]善意的投票 解析 网络流的建模都如此巧妙. 我们把同意的意见看做源点\(s\),不同意的意见看做汇点\(t\). 那我们\(s\)连向所有同意的人,\(t\)连向 ...
- P2057 [SHOI2007]善意的投票 / [JLOI2010]冠军调查
P2057 [SHOI2007]善意的投票 / [JLOI2010]冠军调查 拿来练网络流的qwq 思路:如果i不同意,连边(i,t,1),否则连边(s,i,1).好朋友x,y间连边(x,y,1)(y ...
- 洛谷 P1361 小M的作物 解题报告
P1361 小M的作物 题目描述 小M在MC里开辟了两块巨大的耕地\(A\)和\(B\)(你可以认为容量是无穷),现在,小\(P\)有\(n\)中作物的种子,每种作物的种子有1个(就是可以种一棵作物) ...
- 洛谷 P2323 [HNOI2006]公路修建问题 解题报告
P2323 [HNOI2006]公路修建问题 题目描述 输入输出格式 输入格式: 在实际评测时,将只会有m-1行公路 输出格式: 思路: 二分答案 然后把每条能加的大边都加上,然后加小边 但在洛谷的题 ...
- P2057 [SHOI2007]善意的投票 最小割
$ \color{#0066ff}{ 题目描述 }$ 幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉.对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神.虽然每个人都有自己的主见,但是为了照 ...
随机推荐
- Spring Cloud 入门教程(五): Ribbon实现客户端的负载均衡
接上节,假如我们的Hello world服务的访问量剧增,用一个服务已经无法承载, 我们可以把Hello World服务做成一个集群. 很简单,我们只需要复制Hello world服务,同时将原来的端 ...
- NIO之缓冲区
NIO引入了三个概念: Buffer 缓冲区 Channel 通道 selector 选择器 1.java.io优化建议 操作系统与Java基于流的I/O模型有些不匹配.操作系统要移动的是大块数据(缓 ...
- 《Linux课本》读书笔记 第四章
- ChangeSetenceSort(java)
package com.home.test; import java.util.Arrays; public class ChangeSort { public S ...
- iOS 模拟器“安装”app
1.首先在模拟器上运行我们的app程序 2.执行以下命令: ditto -ck --sequesterRsrc --keepParent `ls - -d -t ~/Library/Developer ...
- 微软开源的Trill是什么?
微软开源的Trill是什么? https://www.cnblogs.com/CattaC/p/10143445.html 微软开源的Trill是什么? 以下是一篇15年的文章的译文:https:// ...
- PHP使用MySQL实现消息队列
消息队列常用在流量削峰(秒杀场景),异步通信等地方. 大体的结构如下: 类似于消费者和生产者的关系,首先生产者在消息队列未满的时候,才将生产的产品放进消息队列中:消费者在消息队列不为空的时候,才从消息 ...
- 关于splice()方法,slice() 、split()方法讲解,reverse()方法、replace()方法
1.slice() 方法可从已有的数组中返回选定的元素. 语法 arrayObject.slice(start,end) 参数 描述 start 必需.规定从何处开始选取.如果是负数,那么它规定从数组 ...
- [读书笔记]SQLSERVER企业级平台管理实践读书笔记01
1. SQLSERVER信息收集 SQLDIAG 使用界面 C:\Users\Administrator>sqldiag2018/01/02 08:13:26.10 SQLDIAG Collec ...
- FuelPHP 系列(六) ------ CURD 增删改查
一.create $article = new Model_Article(); // 或 $article = Model_Article::forge(); // 保存数据,返回新增数据 id $ ...