Description

"若是万一琪露诺(俗称rhl)进行攻击,什么都好,冷静地回答她的问题来吸引她。对方表现出兴趣的话,那就慢慢地反问。在她考虑答案的时候,趁机逃吧。就算是很简单的问题,她一定也答不上来。"--《上古之魔书》
天空中出现了许多的北极光,这些北极光组成了一个长度为n的正整数数列a[i],远古之魔书上记载到:2个位置的graze值为两者位置差与数值差的和:graze(x,y)=|x-y|+|a[x]-a[y]|。
要想破解天罚,就必须支持2种操作(k都是正整数):
Modify x k:将第x个数的值修改为k。
Query x k:询问有几个i满足graze(x,i)<=k。
由于从前的天罚被圣王lmc破解了,所以rhl改进了她的法术,询问不仅要考虑当前数列,还要考虑任意历史版本,
即统计任意位置上出现过的任意数值与当前的a[x]的graze值<=k的对数。(某位置多次修改为同样的数值,按多次统计)

Input

第1行两个整数n,q。分别表示数列长度和操作数。
第2行n个正整数,代表初始数列。
第3~q+2行每行一个操作。
N<=40000, 修改操作数<=60000, 询问操作数<=10000, Max{a[i]}(含修改)<=80000

Output

对于每次询问操作,输出一个非负整数表示答案

Sample Input

3 5
2 4 3
Query 2 2
Modify 1 3
Query 2 2
Modify 1 2
Query 1 1

Sample Output

2
3
3

Solution

设一个点的坐标为$(x,a[x])$,然后发现$graze(x,i) \leq k$的点就是曼哈顿距离到$x$点距离小于等于$k$的点。
但这玩意儿好像是个斜着的正方形?咋矩形求和啊……话说我是不是之前做$K-D~Tree$的时候看过一个什么曼哈顿转切比雪夫的?
曼哈顿$(x,a[x])->$切比雪夫$(x+a[x],x-a[x])$,切比雪夫计算两点距离好像是横纵坐标差的$max$?
这样转下切比雪夫然后一个点要查询的点不就成了一个正着的正方形内的点的个数了么……
这样好像就可以矩形求和了啊……发现那个什么鬼畜历史版本就是扯淡?不就是加入一个点么…

$PS:$此题数据范围描述是假的!

Code

 #include<iostream>
#include<cstring>
#include<cstdio>
#define N (1000009)
using namespace std; struct Que{int x,y,opt,v;}Q[N],tmp[N];
int n,m,q_num,cnt,a[N],c[N],ans[N];
char opt[]; inline int read()
{
int x=,w=; char c=getchar();
while (c<'' || c>'') {if (c=='-') w=-; c=getchar();}
while (c>='' && c<='') x=x*+c-'', c=getchar();
return x*w;
} void Update(int x,int k)
{
for (; x<=1e6; x+=(x&-x)) c[x]+=k;
} int Query(int x)
{
int ans=;
for (; x; x-=(x&-x)) ans+=c[x];
return ans;
} void CDQ(int l,int r)
{
if (l==r) return;
int mid=(l+r)>>;
CDQ(l,mid); CDQ(mid+,r);
int i=l,j=mid+,k=l-;
while (i<=mid || j<=r)
if (j>r || i<=mid && (Q[i].x<Q[j].x || Q[i].x==Q[j].x && Q[i].opt<Q[j].opt))
{
if (Q[i].opt==) Update(Q[i].y,);
tmp[++k]=Q[i]; ++i;
}
else
{
if (Q[j].opt==)
{
if (Q[j].v>) ans[Q[j].v]+=Query(Q[j].y);
else ans[-Q[j].v]-=Query(Q[j].y);
}
tmp[++k]=Q[j]; ++j;
}
for (int i=l; i<=mid; ++i) if (Q[i].opt==) Update(Q[i].y,-);
for (int i=l; i<=r; ++i) Q[i]=tmp[i];
} int main()
{
n=read(); m=read();
for (int i=; i<=n; ++i)
{
a[i]=read();
Q[++q_num]=(Que){i+a[i],i-a[i],,};
}
for (int i=; i<=m; ++i)
{
scanf("%s",opt); int x=read(),k=read();
if (opt[]=='M') a[x]=k, Q[++q_num]=(Que){x+k,x-k,,};
else
{
++cnt;
Q[++q_num]=(Que){x+a[x]+k,x-a[x]+k,,cnt};
Q[++q_num]=(Que){x+a[x]-k-,x-a[x]-k-,,cnt};
Q[++q_num]=(Que){x+a[x]-k-,x-a[x]+k,,-cnt};
Q[++q_num]=(Que){x+a[x]+k,x-a[x]-k-,,-cnt};
}
}
for (int i=; i<=q_num; ++i) Q[i].x+=, Q[i].y+=;
CDQ(,q_num);
for (int i=; i<=cnt; ++i) printf("%d\n",ans[i]);
}

BZOJ4170:极光(CDQ分治)的更多相关文章

  1. BZOJ4170 极光(CDQ分治 或 树套树)

    传送门 BZOJ上的题目没有题面-- [样例输入] 3 5 2 4 3 Query 2 2 Modify 1 3 Query 2 2 Modify 1 2 Query 1 1 [样例输出] 2 3 3 ...

  2. 【教程】简易CDQ分治教程&学习笔记

    前言 辣鸡蒟蒻__stdcall终于会CDQ分治啦!       CDQ分治是我们处理各类问题的重要武器.它的优势在于可以顶替复杂的高级数据结构,而且常数比较小:缺点在于必须离线操作. CDQ分治的基 ...

  3. BZOJ 2683 简单题 ——CDQ分治

    [题目分析] 感觉CDQ分治和整体二分有着很本质的区别. 为什么还有许多人把他们放在一起,也许是因为代码很像吧. CDQ分治最重要的是加入了时间对答案的影响,x,y,t三个条件. 排序解决了x ,分治 ...

  4. HDU5618 & CDQ分治

    Description: 三维数点 Solution: 第一道cdq分治...感觉还是很显然的虽然题目不能再傻逼了... Code: /*=============================== ...

  5. 初识CDQ分治

    [BZOJ 1176:单点修改,查询子矩阵和]: 1176: [Balkan2007]Mokia Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 200 ...

  6. HDU5322 Hope(DP + CDQ分治 + NTT)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5322 Description Hope is a good thing, which can ...

  7. BZOJ2683 简单题(CDQ分治)

    传送门 之前听别人说CDQ分治不难学,今天才知道果真如此.之前一直为自己想不到CDQ的方法二很不爽,今天终于是想出来了一道了,太弱-- cdq分治主要就是把整段区间分成两半,然后用左区间的值去更新右区 ...

  8. BNUOJ 51279[组队活动 Large](cdq分治+FFT)

    传送门 大意:ACM校队一共有n名队员,从1到n标号,现在n名队员要组成若干支队伍,每支队伍至多有m名队员,求一共有多少种不同的组队方案.两个组队方案被视为不同的,当且仅当存在至少一名队员在两种方案中 ...

  9. 【BZOJ-3262】陌上花开 CDQ分治(3维偏序)

    3262: 陌上花开 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 1439  Solved: 648[Submit][Status][Discuss ...

随机推荐

  1. Java基础之 运算符

    前言:Java内功心法之运算符,看完这篇你向Java大神的路上又迈出了一步(有什么问题或者需要资料可以联系我的扣扣:734999078) 计算机的最基本用途之一就是执行数学运算,作为一门计算机语言,J ...

  2. #9 Python列表和元组

    前言 Python中有6种序列:列表.元组.字符串.Unicode字符串.buffer对象和xrange对象.序列通用操作包括:索引.切片.长度.加.乘.最大值.最小值,遍历和检查成员.虽然Pytho ...

  3. python的Web框架,Django的ORM,模型基础,MySQL连接配置及增删改查

    Django中的ORM简介 ORM概念:对象关系映射(Object Relational Mapping,简称ORM): 用面向对象的方式描述数据库,去操作数据库,甚至可以达到不用编写SQL语句就能够 ...

  4. [HEOI2017] 相逢是问候

    Description 支持以下两个操作: 将第 \(l\) 个数到第 \(r\) 个数 \(a_l,a_{l+1},\dots a_r\) 中的每个数 \(a_i\) 替换为 \(c^{a_i}\) ...

  5. css布局------左边宽度不定,右边宽度自动填满剩余空间

    HTML <div class="container"> <div class="left"></div> <div ...

  6. CentOS7下查看系统环境(内存CPU磁盘使用率)

    1.方法一 yum install atop --安装atop sudo atop--开启监视 2.方法二 top 3.方法三 free --查看没存情况 ps ux --查看CPU 情况 磁盘 df

  7. 【表格设置】HTML中合并单元格,对列组合应用样式,适应各浏览器的内容换行

    1.常用表格标签 普通    <table>           |           <tr>          |           |          <th ...

  8. 【Spring】30、Spring,SpringMVC用法汇总

    SpringMVC的工作原理图: springMVC中的几个组件: 前端控制器(DispatcherServlet):接收请求,响应结果,相当于电脑的CPU. 处理器映射器(HandlerMappin ...

  9. linux学习笔记-解决google-chrome打开后弹出输入密码以解锁您的登录密钥环的提示

    我的邮箱地址:zytrenren@163.com欢迎大家交流学习纠错! 一.理论知识 1.密钥的作用 google-chrome存储了网站登录时使用的账号和密码信息,这个密钥是用来保护这些信息的 2. ...

  10. Linux 下Shell变量,环境变量的联系与区别

    Linux下Shell变量,环境变量的联系与区别 by:授客 QQ:1033553122 1.  简介 linux下的变量可分成两种:Shell变量和环境变量. Shell变量,又称本地变量,包括私有 ...