BZOJ4170:极光(CDQ分治)
Description
Input
Output
对于每次询问操作,输出一个非负整数表示答案
Sample Input
2 4 3
Query 2 2
Modify 1 3
Query 2 2
Modify 1 2
Query 1 1
Sample Output
3
3
Solution
设一个点的坐标为$(x,a[x])$,然后发现$graze(x,i) \leq k$的点就是曼哈顿距离到$x$点距离小于等于$k$的点。
但这玩意儿好像是个斜着的正方形?咋矩形求和啊……话说我是不是之前做$K-D~Tree$的时候看过一个什么曼哈顿转切比雪夫的?
曼哈顿$(x,a[x])->$切比雪夫$(x+a[x],x-a[x])$,切比雪夫计算两点距离好像是横纵坐标差的$max$?
这样转下切比雪夫然后一个点要查询的点不就成了一个正着的正方形内的点的个数了么……
这样好像就可以矩形求和了啊……发现那个什么鬼畜历史版本就是扯淡?不就是加入一个点么…
$PS:$此题数据范围描述是假的!
Code
#include<iostream>
#include<cstring>
#include<cstdio>
#define N (1000009)
using namespace std; struct Que{int x,y,opt,v;}Q[N],tmp[N];
int n,m,q_num,cnt,a[N],c[N],ans[N];
char opt[]; inline int read()
{
int x=,w=; char c=getchar();
while (c<'' || c>'') {if (c=='-') w=-; c=getchar();}
while (c>='' && c<='') x=x*+c-'', c=getchar();
return x*w;
} void Update(int x,int k)
{
for (; x<=1e6; x+=(x&-x)) c[x]+=k;
} int Query(int x)
{
int ans=;
for (; x; x-=(x&-x)) ans+=c[x];
return ans;
} void CDQ(int l,int r)
{
if (l==r) return;
int mid=(l+r)>>;
CDQ(l,mid); CDQ(mid+,r);
int i=l,j=mid+,k=l-;
while (i<=mid || j<=r)
if (j>r || i<=mid && (Q[i].x<Q[j].x || Q[i].x==Q[j].x && Q[i].opt<Q[j].opt))
{
if (Q[i].opt==) Update(Q[i].y,);
tmp[++k]=Q[i]; ++i;
}
else
{
if (Q[j].opt==)
{
if (Q[j].v>) ans[Q[j].v]+=Query(Q[j].y);
else ans[-Q[j].v]-=Query(Q[j].y);
}
tmp[++k]=Q[j]; ++j;
}
for (int i=l; i<=mid; ++i) if (Q[i].opt==) Update(Q[i].y,-);
for (int i=l; i<=r; ++i) Q[i]=tmp[i];
} int main()
{
n=read(); m=read();
for (int i=; i<=n; ++i)
{
a[i]=read();
Q[++q_num]=(Que){i+a[i],i-a[i],,};
}
for (int i=; i<=m; ++i)
{
scanf("%s",opt); int x=read(),k=read();
if (opt[]=='M') a[x]=k, Q[++q_num]=(Que){x+k,x-k,,};
else
{
++cnt;
Q[++q_num]=(Que){x+a[x]+k,x-a[x]+k,,cnt};
Q[++q_num]=(Que){x+a[x]-k-,x-a[x]-k-,,cnt};
Q[++q_num]=(Que){x+a[x]-k-,x-a[x]+k,,-cnt};
Q[++q_num]=(Que){x+a[x]+k,x-a[x]-k-,,-cnt};
}
}
for (int i=; i<=q_num; ++i) Q[i].x+=, Q[i].y+=;
CDQ(,q_num);
for (int i=; i<=cnt; ++i) printf("%d\n",ans[i]);
}
BZOJ4170:极光(CDQ分治)的更多相关文章
- BZOJ4170 极光(CDQ分治 或 树套树)
传送门 BZOJ上的题目没有题面-- [样例输入] 3 5 2 4 3 Query 2 2 Modify 1 3 Query 2 2 Modify 1 2 Query 1 1 [样例输出] 2 3 3 ...
- 【教程】简易CDQ分治教程&学习笔记
前言 辣鸡蒟蒻__stdcall终于会CDQ分治啦! CDQ分治是我们处理各类问题的重要武器.它的优势在于可以顶替复杂的高级数据结构,而且常数比较小:缺点在于必须离线操作. CDQ分治的基 ...
- BZOJ 2683 简单题 ——CDQ分治
[题目分析] 感觉CDQ分治和整体二分有着很本质的区别. 为什么还有许多人把他们放在一起,也许是因为代码很像吧. CDQ分治最重要的是加入了时间对答案的影响,x,y,t三个条件. 排序解决了x ,分治 ...
- HDU5618 & CDQ分治
Description: 三维数点 Solution: 第一道cdq分治...感觉还是很显然的虽然题目不能再傻逼了... Code: /*=============================== ...
- 初识CDQ分治
[BZOJ 1176:单点修改,查询子矩阵和]: 1176: [Balkan2007]Mokia Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 200 ...
- HDU5322 Hope(DP + CDQ分治 + NTT)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5322 Description Hope is a good thing, which can ...
- BZOJ2683 简单题(CDQ分治)
传送门 之前听别人说CDQ分治不难学,今天才知道果真如此.之前一直为自己想不到CDQ的方法二很不爽,今天终于是想出来了一道了,太弱-- cdq分治主要就是把整段区间分成两半,然后用左区间的值去更新右区 ...
- BNUOJ 51279[组队活动 Large](cdq分治+FFT)
传送门 大意:ACM校队一共有n名队员,从1到n标号,现在n名队员要组成若干支队伍,每支队伍至多有m名队员,求一共有多少种不同的组队方案.两个组队方案被视为不同的,当且仅当存在至少一名队员在两种方案中 ...
- 【BZOJ-3262】陌上花开 CDQ分治(3维偏序)
3262: 陌上花开 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 1439 Solved: 648[Submit][Status][Discuss ...
随机推荐
- Java基础之 运算符
前言:Java内功心法之运算符,看完这篇你向Java大神的路上又迈出了一步(有什么问题或者需要资料可以联系我的扣扣:734999078) 计算机的最基本用途之一就是执行数学运算,作为一门计算机语言,J ...
- #9 Python列表和元组
前言 Python中有6种序列:列表.元组.字符串.Unicode字符串.buffer对象和xrange对象.序列通用操作包括:索引.切片.长度.加.乘.最大值.最小值,遍历和检查成员.虽然Pytho ...
- python的Web框架,Django的ORM,模型基础,MySQL连接配置及增删改查
Django中的ORM简介 ORM概念:对象关系映射(Object Relational Mapping,简称ORM): 用面向对象的方式描述数据库,去操作数据库,甚至可以达到不用编写SQL语句就能够 ...
- [HEOI2017] 相逢是问候
Description 支持以下两个操作: 将第 \(l\) 个数到第 \(r\) 个数 \(a_l,a_{l+1},\dots a_r\) 中的每个数 \(a_i\) 替换为 \(c^{a_i}\) ...
- css布局------左边宽度不定,右边宽度自动填满剩余空间
HTML <div class="container"> <div class="left"></div> <div ...
- CentOS7下查看系统环境(内存CPU磁盘使用率)
1.方法一 yum install atop --安装atop sudo atop--开启监视 2.方法二 top 3.方法三 free --查看没存情况 ps ux --查看CPU 情况 磁盘 df
- 【表格设置】HTML中合并单元格,对列组合应用样式,适应各浏览器的内容换行
1.常用表格标签 普通 <table> | <tr> | | <th ...
- 【Spring】30、Spring,SpringMVC用法汇总
SpringMVC的工作原理图: springMVC中的几个组件: 前端控制器(DispatcherServlet):接收请求,响应结果,相当于电脑的CPU. 处理器映射器(HandlerMappin ...
- linux学习笔记-解决google-chrome打开后弹出输入密码以解锁您的登录密钥环的提示
我的邮箱地址:zytrenren@163.com欢迎大家交流学习纠错! 一.理论知识 1.密钥的作用 google-chrome存储了网站登录时使用的账号和密码信息,这个密钥是用来保护这些信息的 2. ...
- Linux 下Shell变量,环境变量的联系与区别
Linux下Shell变量,环境变量的联系与区别 by:授客 QQ:1033553122 1. 简介 linux下的变量可分成两种:Shell变量和环境变量. Shell变量,又称本地变量,包括私有 ...