BZOJ4170:极光(CDQ分治)
Description
Input
Output
对于每次询问操作,输出一个非负整数表示答案
Sample Input
2 4 3
Query 2 2
Modify 1 3
Query 2 2
Modify 1 2
Query 1 1
Sample Output
3
3
Solution
设一个点的坐标为$(x,a[x])$,然后发现$graze(x,i) \leq k$的点就是曼哈顿距离到$x$点距离小于等于$k$的点。
但这玩意儿好像是个斜着的正方形?咋矩形求和啊……话说我是不是之前做$K-D~Tree$的时候看过一个什么曼哈顿转切比雪夫的?
曼哈顿$(x,a[x])->$切比雪夫$(x+a[x],x-a[x])$,切比雪夫计算两点距离好像是横纵坐标差的$max$?
这样转下切比雪夫然后一个点要查询的点不就成了一个正着的正方形内的点的个数了么……
这样好像就可以矩形求和了啊……发现那个什么鬼畜历史版本就是扯淡?不就是加入一个点么…
$PS:$此题数据范围描述是假的!
Code
#include<iostream>
#include<cstring>
#include<cstdio>
#define N (1000009)
using namespace std; struct Que{int x,y,opt,v;}Q[N],tmp[N];
int n,m,q_num,cnt,a[N],c[N],ans[N];
char opt[]; inline int read()
{
int x=,w=; char c=getchar();
while (c<'' || c>'') {if (c=='-') w=-; c=getchar();}
while (c>='' && c<='') x=x*+c-'', c=getchar();
return x*w;
} void Update(int x,int k)
{
for (; x<=1e6; x+=(x&-x)) c[x]+=k;
} int Query(int x)
{
int ans=;
for (; x; x-=(x&-x)) ans+=c[x];
return ans;
} void CDQ(int l,int r)
{
if (l==r) return;
int mid=(l+r)>>;
CDQ(l,mid); CDQ(mid+,r);
int i=l,j=mid+,k=l-;
while (i<=mid || j<=r)
if (j>r || i<=mid && (Q[i].x<Q[j].x || Q[i].x==Q[j].x && Q[i].opt<Q[j].opt))
{
if (Q[i].opt==) Update(Q[i].y,);
tmp[++k]=Q[i]; ++i;
}
else
{
if (Q[j].opt==)
{
if (Q[j].v>) ans[Q[j].v]+=Query(Q[j].y);
else ans[-Q[j].v]-=Query(Q[j].y);
}
tmp[++k]=Q[j]; ++j;
}
for (int i=l; i<=mid; ++i) if (Q[i].opt==) Update(Q[i].y,-);
for (int i=l; i<=r; ++i) Q[i]=tmp[i];
} int main()
{
n=read(); m=read();
for (int i=; i<=n; ++i)
{
a[i]=read();
Q[++q_num]=(Que){i+a[i],i-a[i],,};
}
for (int i=; i<=m; ++i)
{
scanf("%s",opt); int x=read(),k=read();
if (opt[]=='M') a[x]=k, Q[++q_num]=(Que){x+k,x-k,,};
else
{
++cnt;
Q[++q_num]=(Que){x+a[x]+k,x-a[x]+k,,cnt};
Q[++q_num]=(Que){x+a[x]-k-,x-a[x]-k-,,cnt};
Q[++q_num]=(Que){x+a[x]-k-,x-a[x]+k,,-cnt};
Q[++q_num]=(Que){x+a[x]+k,x-a[x]-k-,,-cnt};
}
}
for (int i=; i<=q_num; ++i) Q[i].x+=, Q[i].y+=;
CDQ(,q_num);
for (int i=; i<=cnt; ++i) printf("%d\n",ans[i]);
}
BZOJ4170:极光(CDQ分治)的更多相关文章
- BZOJ4170 极光(CDQ分治 或 树套树)
传送门 BZOJ上的题目没有题面-- [样例输入] 3 5 2 4 3 Query 2 2 Modify 1 3 Query 2 2 Modify 1 2 Query 1 1 [样例输出] 2 3 3 ...
- 【教程】简易CDQ分治教程&学习笔记
前言 辣鸡蒟蒻__stdcall终于会CDQ分治啦! CDQ分治是我们处理各类问题的重要武器.它的优势在于可以顶替复杂的高级数据结构,而且常数比较小:缺点在于必须离线操作. CDQ分治的基 ...
- BZOJ 2683 简单题 ——CDQ分治
[题目分析] 感觉CDQ分治和整体二分有着很本质的区别. 为什么还有许多人把他们放在一起,也许是因为代码很像吧. CDQ分治最重要的是加入了时间对答案的影响,x,y,t三个条件. 排序解决了x ,分治 ...
- HDU5618 & CDQ分治
Description: 三维数点 Solution: 第一道cdq分治...感觉还是很显然的虽然题目不能再傻逼了... Code: /*=============================== ...
- 初识CDQ分治
[BZOJ 1176:单点修改,查询子矩阵和]: 1176: [Balkan2007]Mokia Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 200 ...
- HDU5322 Hope(DP + CDQ分治 + NTT)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5322 Description Hope is a good thing, which can ...
- BZOJ2683 简单题(CDQ分治)
传送门 之前听别人说CDQ分治不难学,今天才知道果真如此.之前一直为自己想不到CDQ的方法二很不爽,今天终于是想出来了一道了,太弱-- cdq分治主要就是把整段区间分成两半,然后用左区间的值去更新右区 ...
- BNUOJ 51279[组队活动 Large](cdq分治+FFT)
传送门 大意:ACM校队一共有n名队员,从1到n标号,现在n名队员要组成若干支队伍,每支队伍至多有m名队员,求一共有多少种不同的组队方案.两个组队方案被视为不同的,当且仅当存在至少一名队员在两种方案中 ...
- 【BZOJ-3262】陌上花开 CDQ分治(3维偏序)
3262: 陌上花开 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 1439 Solved: 648[Submit][Status][Discuss ...
随机推荐
- Vxlan学习笔记——实现
1. 创建NVI NVI(Network Virtual Instance)网络虚拟实例,是VTEP上为一个VXLAN提供L2交换服务的虚拟交换实例,NVI和VXLAN ID一一对应.别和VNI混了. ...
- Go语言学习笔记(一) [Go语言的HelloWorld]
日期:2014年7月18日 1.简介 Go 编程语言是一个使得程序员更加有效率的开源项目.Go 是有表达力.简 洁.清晰和有效率的.它的并行机制使其很容易编写多核和网络应用,而新奇的类型系 ...
- Scala面向对象编程与类型系统
Scala支持面向对象编程, 其面向对象特性与Java有共同之处并添加了很多新的特性. 类定义 scala使用class关键字定义类: class MyComplex(real0:Double, im ...
- OOA/OOD&UML部分
UML是什么?有哪些常用的图? UML是标准的建模语言:常用图包括:用例图.静态图(包括类图.对象图和包图),行为图.交互图(顺序图.合作图),实现图. 简述一下Singleton模式. Single ...
- asp.net mvc5轻松实现插件式开发
在研究Nopcommece项目代码的时候,发现Nop.Admin是作为独立项目开发的,但是部署的时候却是合在一起的,感觉挺好 这里把他这个部分单独抽离出来, 主要关键点: 确保你的项目是MVC5 而不 ...
- maven配置之:<distributionManagement>snapshot快照库和release发布库
在使用maven过程中,我们在开发阶段经常性的会有很多公共库处于不稳定状态,随时需要修改并发布,可能一天就要发布一次,遇到bug时,甚至一天要发布N次.我们知道,maven的依赖管理是基于版本管理的, ...
- 【Java深入研究】2、JDK 1.8 LinkedList源码解析
LinkedList是一个实现了List接口和Deque接口的双端链表. 有关索引的操作可能从链表头开始遍历到链表尾部,也可能从尾部遍历到链表头部,这取决于看索引更靠近哪一端. LinkedList不 ...
- fast-spring-boot快速开发项目
Introduction fast-spring-boot 集成Spring Boot 2.1,Mybatis,Mybatis Plus,Druid,FastJson,Redis,Rabbit MQ, ...
- 解决vue-cli不能初始化webpack模板的问题(vue init卡住了,解决办法)
报这个错误 有人说是代理问题.我也不懂,但这个方法有用 1.去github上下载要初始化的模板 https://github.com/vuejs-templates/webpack 或者直接用git去 ...
- 初学HTML-9
详情和概要标签:利用summary标签来描述概要信息,利用details标签来描述详情信息. 默认情况下是折叠显示. 格式:<details> <summary>概要信息< ...