SLAM中的变换(旋转与位移)表示方法
1、旋转矩阵
注:旋转矩阵标题下涉及到的SLAM均不包含位移。
根据同一点P在不同坐标系下e(e1,e2,e3)e'(e1',e2',e3')的坐标a(a1,a2,a3)a'(a1',a2',a3')有如下等式成立:



即a = eTe'a‘,其中eTe'设为R为旋转矩阵,即a = Ra‘,由此便得到P在e'坐标系下到e坐标系下的坐标变换。
在SLAM中一般a'为相机坐标系下坐标Pc,a为世界坐标系下坐标Pw。则有Pw = RPc
其中R = eTe' → eR = e'
如果把R分成三个列向量,则每个列向量即为e’坐标系的基在e坐标系下的坐标。
与此对应SLAM中即为相机坐标系下的坐标轴在世界坐标系下的坐标。
(a11,a21,a31)即为基e1'在e坐标系下的坐标(e'坐标系的另两个基e2',e3'亦如此)。
与此对应的slam中即为相机坐标系下x坐标轴在世界坐标系下的坐标。
SLAM中这里的R一般被称为相机的姿态(不是位姿,不包含平移)。
SLAM中的变换(旋转与位移)表示方法的更多相关文章
- Java 设置PDF中的文本旋转、倾斜
本文介绍通过Java程序在PDF文档中设置文本旋转.倾斜的方法.设置文本倾斜时,通过定义方法TransformText(page);并设置page.getCanvas().skewTransform( ...
- 视觉SLAM中的数学基础 第四篇 李群与李代数(2)
前言 理解李群与李代数,是理解许多SLAM中关键问题的基础.本讲我们继续介绍李群李代数的相关知识,重点放在李群李代数的微积分上,这对解决姿态估计问题具有重要意义. 回顾 为了描述三维空间里的运动,我们 ...
- 视觉SLAM中的数学基础 第二篇 四元数
视觉SLAM中的数学基础 第二篇 四元数 什么是四元数 相比欧拉角,四元数(Quaternion)则是一种紧凑.易于迭代.又不会出现奇异值的表示方法.它在程序中广为使用,例如ROS和几个著名的SLAM ...
- 视觉SLAM中的数学基础 第三篇 李群与李代数
视觉SLAM中的数学基础 第三篇 李群与李代数 前言 在SLAM中,除了表达3D旋转与位移之外,我们还要对它们进行估计,因为SLAM整个过程就是在不断地估计机器人的位姿与地图.为了做这件事,需要对变换 ...
- 从零开始一起学习SLAM | 三维空间刚体的旋转
刚体,顾名思义,是指本身不会在运动过程中产生形变的物体,如相机的运动就是刚体运动,运动过程中同一个向量的长度和夹角都不会发生变化.刚体变换也称为欧式变换. 视觉SLAM中使用的相机就是典型的刚体,相机 ...
- opengl中场景变换|2D与3D互转换(转)
opengl中场景变换|2D与3D互转换 我们生活在一个三维的世界——如果要观察一个物体,我们可以: 1.从不同的位置去观察它.(视图变换) 2.移动或者旋转它,当然了,如果它只是计算机里面的物体,我 ...
- 一文搞懂 SLAM 中的Extension Kalman Filter 算法编程
作者 | Doreen 01 问题描述 预先知道事物未来的状态总是很有价值的! √ 预知台风的路线可以避免或减轻重大自然灾害的损失. √ 敌国打过来的导弹,如果能够高精度预测轨迹,就能有效拦截. √ ...
- SLAM中的EKF,UKF,PF原理简介
这是我在知乎上问题写的答案,修改了一下排版,转到博客里. 原问题: 能否简单并且易懂地介绍一下多个基于滤波方法的SLAM算法原理? 目前SLAM后端都开始用优化的方法来做,题主想要了解一下之前基于 ...
- SLAM中的优化理论(一)—— 线性最小二乘
最近想写一篇系列博客比较系统的解释一下 SLAM 中运用到的优化理论相关内容,包括线性最小二乘.非线性最小二乘.最小二乘工具的使用.最大似然与最小二 乘的关系以及矩阵的稀疏性等内容.一方面是督促自己对 ...
随机推荐
- mysql innodb引擎 一次线上死锁分析排查步骤
我们的线上erp系统一天使用人员反映部分数据死活保存不上而且页面操作很慢.开始以为操作数据量大的原因, 后来查看了我们线上的glowroot系统,发现slowtrace中有超长时间的访问,点开查看详情 ...
- <转>jmeter(十七)目录结构
之前了解过jmeter的目录结构,但只知道一些常用的配置文件,看到一篇介绍的比较详细的博客,就转载过来,当然,其实是自己懒得再去搜集更多资料慢慢看了,时间不够用... 原文链接:http://www. ...
- 如何扩展32位EXE程序的使用内存
1 运行Visual studio的命令行,执行下面命令:editbin /LARGEADDRESSAWARE “C:\Program Files\Skyline\TerraExplorer Pro\ ...
- Oracle 在函数或存储过程中执行sql查询字符串并将结果值赋值给变量
请看黄色部分 --区县指标 THEN TVALUE_SQL := 'SELECT TO_CHAR(' || CUR_ROW.MAIN_FIELD || ') FROM ' || CUR_ROW.END ...
- 【原创】MVC +WebUploader 实现分片上传大文件
大文件的上传是我一直以来想学习的一个技术点,今天在项目闲暇之时,终于有机会自己尝试了一把,本文仅仅是个Demo,各种错误处理都么有,仅限于大家来学习思路. 参考博文:http://www.cnblog ...
- 初学Python,对于开发工具不是很了解?一文带你选择适合你的开发工具
工欲善其事必先利其器!想要获取更多的开发工具安装包.安装教程,可以加群:725479218, 开发Python用什么工具好呢?其实刚学Python的话,使用IDLE就够了,虽然调试不是特别方便,但是对 ...
- ${pageContext.request.contextPath}的作用【转载】
原文地址:http://ps329795485-126-com.iteye.com/blog/1290662 刚开始不知道是怎么回事,在网上也查找了一些资料,看了还是晕. 看了另一个大侠的,终于有了点 ...
- TCP/IP协议---ARP协议
ARP协议 以下就默认在以太网类型的网络. 这个协议的作用是通过ip地址(32bit)找到硬件地址(48bit).顺便提一下:在一个局域网里,大家常见的设备交换机,交换机上的主机在互相通信时,实际用的 ...
- docker load导入镜像报错:open /var/lib/docker/tmp/docker-import-970689518/bin/json: no such file or directory
今天将之前打包好的mysql5.7.19的tar包通过docker load命令导入到Docker环境中却报出了如下错误: [root@host---- task]# docker load < ...
- Luogu P2403 [SDOI2010]所驼门王的宝藏
比较显然的缩点+拓扑排序题,只不过要建虚点优化建边. 首先我们发现在一个SCC里的点都是可以一起对答案产生贡献的,因此先缩成DAG,然后拓扑找最长链. 但是我们发现这题最坏情况下边数会达到恐怖的\(O ...