pytorch构建自己的数据集
现在需要在json文件里面读取图片的URL和label,这里面可能会出现某些URL地址无效的情况。
python读取json文件
此处只需要将json文件里面的内容读取出来就可以了
with open("json_path",'r') ad load_f:
load_dict = json.load(load_f)
json_path是json文件的地址,json文件里面的内容读取到load_dict变量中,变量类型为字典类型。
python通过URL打开图片
通过skimage获取URL图片是简单的方式。
from skimage import io
image = io.imread(img_src) # img_src是图片的URL
io.imshow(image)
io.show()
pytorch构建自己的数据集
pytorch中文网中有比较好的讲解: https://ptorch.com/news/215.html
加载图片预处理以及可视化见: https://oldpan.me/archives/pytorch-transforms-opencv-scikit-image
定义自己的数据集使用类 torch.utils.data.Dataset这个类,这个类中有三个关键的默认成员函数,__init__,__len__,__getitem__。
__init__类实例化应用,所以参数项里面最好有数据集的path,或者是数据以及标签保存的json、csv文件,在__init__函数里面对json、csv文件进行解析。
__len__需要返回images的数量。
__getitem__中要返回image和相对应的label,要注意的是此处参数有一个index,指的返回的是哪个image和label。
import torch
from torchvision import transforms
import json
import os
from PIL import Image class ProductDataset(torch.utils.data.Dataset):
def __init__(self,json_path,data_path,transform = None,train = True):
with open(json_path,'r') as load_f:
self.json_dict = json.load(load_f)
self.json_dict = self.json_dict["images"]
self.train = train
self.data_path = data_path
self.transform = transform def __len__(self):
return len(self.json_dict) def __getitem__(self,index):
image_id = os.path.join(self.data_path + '/',str(self.json_dict[index]["id"]))
image = Image.open(image_id)
image = image.convert('RGB')
label = int(self.json_dict[index]["class"])
if self.transform:
image = self.transform(image)
if self.train:
return image,label
else:
image_id = self.json_dict[index]["id"]
return image,label,image_id if __name__ == '__main__':
val_dataset = ProductDataset('data/FullImageTrain.json','data/train',train=False,
transform=transforms.Compose([
transforms.Pad(4),
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
]))
kwargs = {'num_workers': 4, 'pin_memory': True}
test_loader = torch.utils.data.DataLoader(dataset=val_dataset,
batch_size=32,
shuffle=False,
**kwargs) print(val_dataset.__len__())
count = 0
for image,label,image_id in test_loader:
print(image.shape,count)
count += 1

关于transform,图像预处理的各个函数功能介绍如下:
torch.transforms是常见的图像变换,可以用Compose连接起来。
下面是Transforms on PIL Image:
transforms.CenterCrop(size):
size可以是一个像(h,w)的sequence,这样输出的是一个中心裁剪的(h,w)图像。
transforms.ColorJitter(brightness=0, contrast=0, saturation=0, hue=0):
随机更改图像的亮度,对比度和饱和度。
传递的参数是float型变量或者是tuple(元素是float型)型变量,如果是tuple型变量,第一个元素是min值,第二个元素是max值。
transforms.Grayscale(num_output_channels=1)
将Image转换为灰度值
transforms.Pad(padding, fill=0, padding_mode='constant')
padding这个参数,如果给定的是单个的值,那么会pad所有的边。
transforms.RandomCrop(size, padding=None, pad_if_needed=False, fill=0, padding_mode='constant')
随机裁剪图片到给定尺寸
size如果是(h,w)这样的sequence,那么将剪出一个(h,w)大小的图片
transforms.RandomHorizontalFlip(p=0.5):
以给定的概率随机水平翻转给定的PIL图像。
transforms.RandomResizedCrop(size,scale=(0.08, 1.0), ratio=(0.75, 1.3333333333333333), interpolation=2)
将给定的图像随机裁剪为不同的大小和高宽比,然后缩放所裁剪的图像到指定大小。
该操作的含义:即使只是该物体的一部分,我们也认为这是该类物体。
scale为0.08到1的意思为裁剪的面积比例为0.08到1,注意是面积不是边,ratio是高宽比。
transforms.Resize(size, interpolation=2):
Resize给定的Image图像到指定大小。
size:给定图像大小
interpolation:差值方法,默认是PIL.Image.BILINEAR
下面是Transforms on torch.*Tensor:
transforms.Normalize(mean,var,inplace=False):
标准化图像,mean和var给定三个值的情况下,是分别对于RGB三个channel进行标准化。
pytorch构建自己的数据集的更多相关文章
- 使用pytorch构建神经网络的流程以及一些问题
使用PyTorch构建神经网络十分的简单,下面是我总结的PyTorch构建神经网络的一般过程以及我在学习当中遇到的一些问题,期望对你有所帮助. PyTorch构建神经网络的一般过程 下面的程序是PyT ...
- 使用PyTorch构建神经网络模型进行手写识别
使用PyTorch构建神经网络模型进行手写识别 PyTorch是一种基于Torch库的开源机器学习库,应用于计算机视觉和自然语言处理等应用,本章内容将从安装以及通过Torch构建基础的神经网络,计算梯 ...
- pytorch 加载mnist数据集报错not gzip file
利用pytorch加载mnist数据集的代码如下 import torchvision import torchvision.transforms as transforms from torch.u ...
- 使用PyTorch构建神经网络以及反向传播计算
使用PyTorch构建神经网络以及反向传播计算 前一段时间南京出现了疫情,大概原因是因为境外飞机清洁处理不恰当,导致清理人员感染.话说国外一天不消停,国内就得一直严防死守.沈阳出现了一例感染人员,我在 ...
- pytorch构建自己设计的层
下面是如何自己构建一个层,分为包含自动反向求导和手动反向求导两种方式,后面会分别构建网络,对比一下结果对不对. -------------------------------------------- ...
- Pytorch文本分类(imdb数据集),含DataLoader数据加载,最优模型保存
用pytorch进行文本分类,数据集为keras内置的imdb影评数据(二分类),代码包含六个部分(详见代码) 使用环境: pytorch:1.1.0 cuda:10.0 gpu:RTX2070 (1 ...
- 【猫狗数据集】pytorch训练猫狗数据集之创建数据集
猫狗数据集的分为训练集25000张,在训练集中猫和狗的图像是混在一起的,pytorch读取数据集有两种方式,第一种方式是将不同类别的图片放于其对应的类文件夹中,另一种是实现读取数据集类,该类继承tor ...
- PyTorch迁移学习-私人数据集上的蚂蚁蜜蜂分类
迁移学习的两个主要场景 微调CNN:使用预训练的网络来初始化自己的网络,而不是随机初始化,然后训练即可 将CNN看成固定的特征提取器:固定前面的层,重写最后的全连接层,只有这个新的层会被训练 下面修改 ...
- pytorch构建优化器
这是莫凡python学习笔记. 1.构造数据,可以可视化看看数据样子 import torch import torch.utils.data as Data import torch.nn.func ...
随机推荐
- 亿图图示 Edraw Max v9.2 完美破解版
主程序:http://www.edrawsoft.cn/2download/edrawmax-cn-9.2.exe破解补丁:https://www.lanzous.com/i1fjsyh 密码:52p ...
- javaScript放在head和body的区别
JavaScript写在哪里? 内部:Html网页的<body></body>中: 内部:Html网页的<head></head>中: 外部:外部js文 ...
- fat32转ntfs命令
1.打开电脑左下角的 “开始” 菜单2.鼠标左键单机 “运行”3.弹出横框输入 cmd 后,确定4.弹出黑框输入 convert E:/FS:NTFS 然后回车5.提示输入盘符名,也就是你输入D盘的名 ...
- final、finally、finalize区别
final final关键字可以用来修饰类,方法以及成员变量,当用在不同的场景下时具有不同的意义. 修饰类 如果修饰类,则代表这个类不可继承 修饰方法 如果修饰方法,则代表这个方法不可覆写:同时,允许 ...
- python框架之Flask(3)-Blueprint(蓝图)
蓝图 用途 给开发者提供清晰的目录结构. 使用 目录结构 1.创建项目. 2.在项目目录下创建与项目名同名文件夹. 3.在 test_prj 文件夹下创建 __init__.py 文件,并在其中实例化 ...
- 基于Windows的git代码统计工具GitStats
参考: https://blog.csdn.net/windfromthesouth/article/details/72961525
- 十、无事勿扰,有事通知(1)——NSNotification
概述 很久很久以前,有一只菜鸟正在美滋滋的撸着他的嵌入式C代码.然而有一天,老板对菜鸟说:“别撸C了,从现在开始你就写swift开发ios了.”菜鸟一脸懵逼,但还是照做了. 又有一天,菜蛋谄媚的对菜鸟 ...
- #WEB安全基础 : HTTP协议 | 0x6 初识HTTP报文
欢迎来到HTTP最精彩的部分 请注意:应用HTTP协议时,必定有一方担任客户端,另一方担任服务器 客户端向服务器发出请求,服务器向客户端返回响应 下面是一个请求与相应的例子: 请求: GET /ind ...
- MySQL Workbench在archlinux中出现 Could not store password: The name org.freedesktop.secrets was not provided by any .service files的错误
MySQL Workbench在archlinux中出现 Could not store password: The name org.freedesktop.secrets was not prov ...
- 浮点数(double、float)的格式化问题及处理
---恢复内容开始--- 平时常会面临浮点数的格式处理问题,下面就举例说一说常见的问题及处理: 1,科学计数法问题 一个浮点数123456789.10,在打印的时候变成了1.234567891E8,处 ...