题目大意:给定一个有 N 个数的序列,求其最长下降子序列的长度,并求出有多少种不同的最长下降子序列。(子序列各项数值相同视为同一种)

update at 2019.4.3

题解:求最长下降子序列本身并不难,是一道非常经典的线性dp问题,关键在于dp计数部分。这道题跟一般的状态转移计数不同,这里并不是按照状态去计数,对于状态来说不会有重复的情况发生。

考虑何时会产生答案重叠。对于序列中两个值相同的元素 \(a_i,a_j,(j<i)\),到 i 之前的序列被这两个相同的元素分成了两部分,即:小于 j 的序列(第一部分)和大于 j 小于 i 的序列(第二部分)。下面分情况进行讨论。

  1. 第二部分对 dp[i] 没有产生任何贡献,即:第二部分的元素值都小于 a[i],此时发现 a[i] 和 a[j] 完全等价,因此 i 的答案贡献应该为 0。
  2. 第二部分对 dp[i] 产生了贡献,且 dp[i]>dp[j],这时 i 和 j 的序列显然不会有重叠的概念,毕竟都不一样长嘛qwq。
  3. 第二部分对 dp[i] 产生了贡献,且 dp[i]=dp[j],比如序列 1 3 4 2 4,这时,对于第一个 4 之前的答案种数对 i 忽略不计即可,不过第二部分对 i 的种数贡献需要计入 f[i]。

代码如下

#include <bits/stdc++.h>
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define all(x) x.begin(),x.end()
using namespace std;
typedef long long ll;
typedef pair<int,int> P;
const int dx[]={0,1,0,-1};
const int dy[]={1,0,-1,0};
const int mod=1e9+7;
const int inf=0x3f3f3f3f;
const int maxn=5010;
const double eps=1e-6;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll sqr(ll x){return x*x;}
inline ll read(){
ll x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
}
/*--------------------------------------------------------*/ int n,a[maxn];
int dp[maxn],f[maxn],ans1,ans2; void read_and_parse(){
n=read();
for(int i=1;i<=n;i++)a[i]=read();
} void solve(){
for(int i=1;i<=n;i++){
dp[i]=1;
for(int j=1;j<i;j++)if(a[j]>a[i])dp[i]=max(dp[i],dp[j]+1);
ans1=max(ans1,dp[i]);
}
for(int i=1;i<=n;i++){
if(dp[i]==1)f[i]=1;
for(int j=1;j<i;j++)
if(a[j]>a[i]&&dp[i]==dp[j]+1)f[i]+=f[j];
else if(a[i]==a[j]&&dp[i]==dp[j])f[i]=0;
if(dp[i]==ans1)ans2+=f[i];
}
printf("%d %d\n",ans1,ans2);
} int main(){
read_and_parse();
solve();
return 0;
}

【POJ1952】逢低吸纳 dp+计数的更多相关文章

  1. Usaco 4.3.1 Buy Low, Buy Lower 逢低吸纳详细解题报告

    问题描述: "逢低吸纳"是炒股的一条成功秘诀.如果你想成为一个成功的投资者,就要遵守这条秘诀:  "逢低吸纳,越低越买"  这句话的意思是:每次你购买股票时的股 ...

  2. 洛谷P2687 [USACO4.3]逢低吸纳Buy Low, Buy Lower

    P2687 [USACO4.3]逢低吸纳Buy Low, Buy Lower 题目描述 “逢低吸纳”是炒股的一条成功秘诀.如果你想成为一个成功的投资者,就要遵守这条秘诀: "逢低吸纳,越低越 ...

  3. [USACO4.3]逢低吸纳Buy Low, Buy Lower

    https://daniu.luogu.org/problemnew/show/2687 求方案数: if(f[j]+1==f[i] && a[j]>a[i]) s[i]+=s[ ...

  4. 动态规划(DP计数):HDU 5116 Everlasting L

    Matt loves letter L.A point set P is (a, b)-L if and only if there exists x, y satisfying:P = {(x, y ...

  5. Tetrahedron(Codeforces Round #113 (Div. 2) + 打表找规律 + dp计数)

    题目链接: https://codeforces.com/contest/166/problem/E 题目: 题意: 给你一个三菱锥,初始时你在D点,然后你每次可以往相邻的顶点移动,问你第n步回到D点 ...

  6. HDU 4055 The King’s Ups and Downs(DP计数)

    题意: 国王的士兵有n个,每个人的身高都不同,国王要将他们排列,必须一高一矮间隔进行,即其中的一个人必须同时高于(或低于)左边和右边.问可能的排列数.例子有1千个,但是最多只算到20个士兵,并且20个 ...

  7. HDU 4055 Number String(DP计数)

    题意: 给你一个含n个字符的字符串,字符为'D'时表示小于号,字符为“I”时表示大于号,字符为“?”时表示大小于都可以.比如排列 {3, 1, 2, 7, 4, 6, 5} 表示为字符串 DIIDID ...

  8. BZOJ 2281 Luogu P2490 [SDOI2011]黑白棋 (博弈论、DP计数)

    怎么SDOI2011和SDOI2019的两道题这么像啊..(虽然并不完全一样) 题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?i ...

  9. 动态规划(DP计数):HDU 5117 Fluorescent

    Matt, a famous adventurer who once defeated a pack of dire wolves alone, found a lost court. Matt fi ...

随机推荐

  1. YY:2018互联网创业公司应看清的事情

    潮流,技术,生活方式,盈利模式,消费人群几乎每年都在改变,2018,你看到的是怎样的一盘棋. 2018年是个很好的数字,很多互联网公司寄予希望在这个幸运数字年头奋起一搏,拿到一份可观的酬金.特别是一些 ...

  2. Linux下防御DDOS攻击的操作梳理

    DDOS的全称是Distributed Denial of Service,即"分布式拒绝服务攻击",是指击者利用大量“肉鸡”对攻击目标发动大量的正常或非正常请求.耗尽目标主机资源 ...

  3. Docker容器学习梳理 - 容器时间跟宿主机时间同步

    在Docker容器创建好之后,可能会发现容器时间跟宿主机时间不一致,这就需要同步它们的时间,让容器时间跟宿主机时间保持一致.如下: 宿主机时间 [root@slave-1 ~]# date Fri M ...

  4. 后台跑包方法 断开ssh程序也能继续执行的方法screen命令

    aircrack-ng -w 字典路径 握手包路径 screen -S 001创建会话 screen -ls  列出窗口列表 screen -r 5位数字  进入会话指令 如果会话恢复不了,则是有可能 ...

  5. ACM注意事项

           acm竞赛中不能使用一些屏幕控制和键盘读取的函数,如:getch(),geche(),gotoxy(),clrscr(),另外fflush(stdio)这个函数也不能使用,因为在有的编译 ...

  6. Linux内核分析 笔记八 进程的切换和系统的一般执行过程 ——by王玥

    一.进程切换的关键代码switch_to的分析 (一)进程调度与进程调度的时机分析 1.不同类型的进程有不同的调度需求 第一种分类: I/O-bound:频繁地进行I/O,花费很多的时间等待I/O操作 ...

  7. Linux内核第八节 20135332武西垚

    第一种分类: I/O-bound:频繁进行I/O,并且需要花费很多时间等待I/O完成 CPU-bound:计算密集,需要大量的CPU时间进行运算 第二种分类: 批处理进程:不必与用户交互,常在后台进行 ...

  8. mysql数据库忘记密码时如何修改

    工具/原料 mysql数据库 cmd命令行 打开mysql.exe和mysqld.exe所在的文件夹,复制路径地址 打开cmd命令提示符,进入上一步mysql.exe所在的文件夹

  9. org.springframework.beans.factory.parsing.BeanDefinitionParsingException: Configuration problem: Unexpected failure during bean definition parsing Offending resource: class path resource [applicationC

    这个错误是 org.springframework.beans.factory.parsing.BeanDefinitionParsingException: Configuration proble ...

  10. c++中常见概念、关键字等的区别

    (1).重载,覆盖和隐藏的区别: 重载主要是函数的重载,函数名相同,返回类型相同,但是函数形参不同,被调用时,根据函数形参决定调用原函数还是重载函数. 覆盖主要用在继承多态中,函数前加virtual关 ...