The Unique MST POJ - 1679 (次小生成树)
Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties:
1. V' = V.
2. T is connected and acyclic.
Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'.
Input
Output
Sample Input
2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2
Sample Output
3
Not Unique! 求次小生成树 看与最小生成树是否相同
prime求次小生成树
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#define mem(a, b) memset(a, b, sizeof(a))
using namespace std;
const int maxn = , INF = 0x7fffffff;
typedef long long LL;
int graph[][], d[maxn], vis[maxn], maxd[][], pre[maxn];
int n, m; int prime(int s)
{
int temp, sum = ;
mem(vis, );
for(int i=; i<=n; i++) d[i] = graph[s][i], pre[i] = s;
vis[s] = ;
d[s] = ;
for(int i=; i<n; i++)
{
int mincost = INF;
for(int j=; j<=n; j++)
{
if(!vis[j] && mincost > d[j])
mincost = d[j], temp = j;
}
for(int j=; j<=n; j++)
if(vis[j]) maxd[temp][j] = maxd[j][temp] = max(mincost, maxd[pre[temp]][j]);
vis[temp] = ;
sum += mincost;
for(int j=; j<=n; j++)
{
if(!vis[j] && d[j] > graph[temp][j])
d[j] = graph[temp][j], pre[j] = temp;
}
}
// for(int i=1; i<=n; i++)
// sum += d[i];
return sum;
} int main()
{
int T;
cin>> T;
while(T--)
{
cin>> n >> m;
for(int i=; i<=n; i++)
for(int j=; j<=n; j++)
if(i == j) graph[i][j] = ;
else graph[i][j] = graph[j][i] = INF;
for(int i=; i<m; i++)
{
int u, v, w;
cin>> u >> v >> w;
graph[u][v] = graph[v][u] = w;
}
int sum = prime();
int lsum = INF;
for(int i=; i<=n; i++)
for(int j=i+; j<=n; j++)
{
if(i != pre[j] && j != pre[i] && graph[i][j] != INF)
if(sum - maxd[i][j] + graph[i][j] < lsum)
lsum = sum - maxd[i][j] + graph[i][j];
} if(lsum == sum)
cout<< "Not Unique!" <<endl;
else
cout<< sum <<endl; } return ;
}
The Unique MST POJ - 1679 (次小生成树)的更多相关文章
- The Unique MST POJ - 1679 次小生成树prim
求次小生成树思路: 先把最小生成树求出来 用一个Max[i][j] 数组把 i点到j 点的道路中 权值最大的那个记录下来 used数组记录该条边有没有被最小生成树使用过 把没有使用过的一条边加 ...
- Day5 - G - The Unique MST POJ - 1679
Given a connected undirected graph, tell if its minimum spanning tree is unique. Definition 1 (Spann ...
- POJ 1679 The Unique MST 【最小生成树/次小生成树模板】
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 22668 Accepted: 8038 D ...
- poj1679 The Unique MST(判定次小生成树)
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 23180 Accepted: 8235 D ...
- POJ-1679.The Unique MST.(Prim求次小生成树)
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 39561 Accepted: 14444 ...
- poj 1679 次小生成树
次小生成树的求法: 1.Prime法 定义一个二维数组F[i][j]表示点i到点j在最小生成树中的路径上的最大权值.有个知识就是将一条不在最小生成树中的边Edge加入最小生成树时,树中要去掉的边就是E ...
- K - The Unique MST - poj 1679
题目的意思已经说明了一切,次小生成树... ****************************************************************************** ...
- (最小生成树 次小生成树)The Unique MST -- POJ -- 1679
链接: http://poj.org/problem?id=1679 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82831#probl ...
- The Unique MST POJ - 1679 最小生成树判重
题意:求一个无向图的最小生成树,如果有多个最优解,输出"Not Unique!" 题解: 考虑kruskal碰到权值相同的边: 假设点3通过边(1,3)连入当前所维护的并查集s. ...
随机推荐
- (原创)odoo在docker环境下无法备份
odoo容器内置postgresql-client版本和数据库版本不一致,安装和数据库版本相同或者更高版本的客户端 参考:https://www.postgresql.org/download/lin ...
- xhtml和html的区别 html5和xhtml的区别
xhtml和html的区别 - 分为两大类比较:一个是功能上的差别,另外是书写习惯的差别.关于功能上的差别,主要是XHTML可兼容各大浏览器.手机以及PDA,并且浏览器也能快速正确地编译网页,- XH ...
- Roslyn入门(一)-C#语法分析
演示环境 Visual Studio 2017 .NET Compiler Platform SDK 简介 今天,Visual Basic和C#编译器是黑盒子:输入文本然后输出字节,编译管道的中间阶段 ...
- Flutter - 本地化启动列表中App名字
上一篇讲了 Flutter - 本地化语言 但是这还有一点小欠缺,就是启动器中的App名字还是无法本地化. 比如英文系统中Play Store,在中文手机中就会显示Play 商店 那么为了解决这个问题 ...
- Python代码转c#部分参考样例
最近在做一部分Pyhton代码转c#代码的工作,以下案例亲自都测试过,现整理出来希望对有帮助的同学提供参考: Python | C# *:first-child{margin-top:0 !impor ...
- 【nodejs】让nodejs像后端mvc框架(asp.net mvc)一样处理请求--目录(8/8 完结)
为什么要做这个 在使用nodejs开发过程中,总是发现需要做很多重复性的体力劳动,且因为自身是服务端程序员出身,感觉有一些服务端好的东西其实可以在nodejs上得到应用并能提高一些开发工作效率. 本系 ...
- Python常见字符编码间的转换
主要内容: 1.Unicode 和 UTF-8的爱恨纠葛 2.字符在硬盘上的存储 3.编码的转换 4.验证编码是否转换正确 5.Python bytes类型 前 ...
- javascript数据类型以及类型间的转化函数
js 有五种基本数据类型,还有个引用类型 1.undefined 类型,只有一个志undefined 当变量未初始化时都会是这个类型. 2.null 类型,也是只有一个值null,null类型的typ ...
- Junit测试用例
一.题目简介 返回一个给定整数参数的绝对值. 二.源码的github链接 https://github.com/liyan941016/test/blob/master/FileTest.java h ...
- <构建之法>8,9,10章的读后感
第八章 这一章主要讲的是需求分析,主要介绍在客户需求五花八门的情况下,软件团队如何才能准确而全面地找到这些需求. 第九章 问题:我们现在怎样培养才能成为一名合格的PM呢? 第十章 问题:如果典型用户吴 ...