传送门

题意:给出一棵树,在每一轮中,随机选择一个点将它与它的子树割掉,最后割掉所有点时游戏结束,问游戏期望进行多少轮。$N \leq 10^5$


和的期望等于期望的和,我们考虑每一个点对最后答案的贡献。

考虑到如果把某一个点$u$的任意一个祖先割掉,$u$就不会产生贡献,而只有在割掉$u$的祖先之前割掉$u$,$u$才能产生$1$的贡献,所以对于某一个点$u$,它产生贡献的概率为$\frac{1}{dep_u}$,所以我们求一边$\sum\frac{1}{dep_i}$就可以了

 #include<bits/stdc++.h>
 using namespace std;

  , MOD = ;
 struct Edge{
     int end , upEd;
 }Ed[MAXN << ];
 int head[MAXN] , dep[MAXN] , N , sum , cntEd;

 inline void addEd(int a , int b){
     Ed[++cntEd].end = b;
     Ed[cntEd].upEd = head[a];
     head[a] = cntEd;
 }

 inline long long poww(long long a , int b){
     ;
     while(b){
         )
             times = times * a % MOD;
         a = a * a % MOD;
         b >>= ;
     }
     return times;
 }

 void dfs(int now , int fa){
     dep[now] = dep[fa] + ;
     sum = (sum + poww(dep[now] , MOD - )) % MOD;
     for(int i = head[now] ; i ; i = Ed[i].upEd)
         if(!dep[Ed[i].end])
             dfs(Ed[i].end , now);
 }

 int main(){
     cin >> N;
      ; i < N ; i++){
         int a , b;
         cin >> a >> b;
         addEd(a , b);
         addEd(b , a);
     }
     dfs( , );
     cout << sum % MOD;
     ;
 }

Nowcoder156F 托米的游戏/CF280C Game on tree 期望的更多相关文章

  1. cf280C. Game on Tree(期望线性性)

    题意 题目链接 Sol 开始想的dp,发现根本不能转移(貌似只能做链) 根据期望的线性性,其中\(ans = \sum_{1 * f(x)}\) \(f(x)\)表示删除\(x\)节点的概率,显然\( ...

  2. CF280C Game on Tree 期望

    期望多少次操作,我们可以看做是染黑了多少节点 那么,我们可以用期望的线性性质,求出每个节点被染黑的概率之和(权值为$1$) 一个节点$u$被染黑仅跟祖先有关 我们把$u$到祖先的链抽出来 只要选取链上 ...

  3. CF280C Game on Tree

    题目链接 : CF280C Game on Tree 题意 : 给定一棵n个节点的树T 根为一(我咕的翻译漏掉了...) 每次随机选择一个未被删除的点 并将它的子树删除 求删整棵树的期望步数 n ∈ ...

  4. 牛客网练习赛23 F 托米的游戏

    链接:https://www.nowcoder.com/acm/contest/156/F 来源:牛客网 题目描述 题目背景编不下去了 托米有一棵有根树 T, 树根为1,每轮他会在剩下的子树中等概率一 ...

  5. UOJ#266. 【清华集训2016】Alice和Bob又在玩游戏 博弈,DSU on Tree,Trie

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ266.html 题解 首先我们可以直接暴力 $O(n^2)$ 用 sg 函数来算答案. 对于一个树就是枚举 ...

  6. SDOI2015 寻宝游戏 | noi.ac#460 tree

    题目链接:戳我 可以知道,我们相当于是把有宝藏在的地方围了一个圈,求这个圈最小是多大. 显然按照dfs序来遍历是最小的. 那么我们就先来一遍dfs序列,并且预处理出来每个点到根的距离(这样我们就可用\ ...

  7. 牛客练习赛23 F 托米的游戏

    https://www.nowcoder.com/acm/contest/156/F 树 概率 #include <cstdio> #include <cstdlib> #in ...

  8. CF280C Game on Tree 概率与期望

    利用期望的线性性,即 $E(a+b)=E(a)+E(b)$. 对于所有点分别求一下期望然后累加即可. code: #include <bits/stdc++.h> #define N 10 ...

  9. CF280C Game on tree(期望dp)

    这道题算是真正意义上人生第一道期望的题? 题目大意: 给定一个n个点的,以1号点为根的树,每一次可以将一个点和它的子树全部染黑,求染黑所有点的期望 QwQ说实话,我对期望这种东西,一点也不理解... ...

随机推荐

  1. JavaScript非数字(中文)排序

    直接上代码: var arr=[ {name:"张散步",age:"23",sports:"篮球",number:"231123& ...

  2. 我的第一个个人博客网站 -> wizzie.top

    从去年下半年实习结束,到找到第一个属于自己的工作,我就开始着手搭建自己的网站. 使用阿里云学生服务器,域名,备案解析后,开始设计网站结构和页面布局. 因为临近毕业,网站真的是写的页面怎么多怎么写,所以 ...

  3. Kotlin入门(9)函数的基本用法

    上一篇文章介绍了Kotlin新增的空安全机制,控制语句部分可算是讲完了,接下来将连续描述Kotlin如何定义和调用函数,本篇文章先介绍函数的基本用法. 前面几篇文章介绍控制语句之时,在setOnCli ...

  4. servlet及jsp之间的请求转发

    1.servlet间的请求转发 <dependencies> <dependency> <groupId>javax.servlet</groupId> ...

  5. 简述 Spring Cloud 是什么2

    一.概念定义       Spring Cloud是一个微服务框架,相比Dubbo等RPC框架, Spring Cloud提供的全套的分布式系统解决方案. Spring Cloud对微服务基础框架Ne ...

  6. SOAP REST

    SOAP是基于RPC原理,是传统程序的函数调用和返回在RPC中被请求和应答代替了而已. SOAP Simple Object Access Protocol,是一种严格定义的信息交换协议,用于在web ...

  7. 机器学习中学习曲线的 bias vs variance 以及 数据量m

    关于偏差.方差以及学习曲线为代表的诊断法: 在评估假设函数时,我们习惯将整个样本按照6:2:2的比例分割:60%训练集training set.20%交叉验证集cross validation set ...

  8. sql2008和sql2012混合安装后打开SQL Server 配置管理器查看出现“远程过程调用失败”0x800706be

    sql2008和sql2012混合安装后打开SQL Server 配置管理器SQL Server服务出现“远程过程调用失败”0x800706be 网上很多人都说这个解决方案,通过卸载“Microsof ...

  9. Win10 + MASM32 + EditPlus 汇编语言编程环境设置

    下载安装MASM32汇编环境 官方下载站:MASM32 环境变量配置 配置MasmHome变量,值为masm32的安装目录: 配置include和lib变量 include : %MasmHome%\ ...

  10. Flask消息闪现

    目录 Flask消息闪现 简单的例子 闪现消息的类别 过滤闪现消息 Message Flashing 参考 Flask消息闪现 一个好的应用和用户界面都需要良好的反馈.如果用户得不到足够的反馈,那么应 ...