3293

双倍经验 1045

先考虑能否断环为链。显然是可以的,因为金币不可能在整个环上平移。所以我们枚举断点\(k\),表示\(k\)和\(k+1\)之间不交换金币。

令\(d_i=a_i-aver\),表示\(i\)需要给\(i-1\)的金币数量,\(d_i\)可正可负(负的就表示\(i-1\)给\(i\) \(d_i\)个金币)。显然没必要再表示\(i-1\)给\(i\)的金币数量啊。

这样再对\(d_i\)求个前缀和\(s_i\),\(|s_i|\)就表示\(i\)位置需转手多少金币。注意因为是均分所以\(s_n=0\)!

那么枚举断点\(k\)后,答案是\(\sum_{i=k+1}^n|s_i-s_k|+\sum_{i=1}^k|s_i+s_n-s_k|\)。(当然要加绝对值啊→_→,求的是区间和的绝对值)

因为\(s_n=0\),所以所求就是\(\sum_{i=1}^n|s_i-s_k|\)。\(s_k\)取中位数时答案最小(向两边移动会造成更多的代价)。

简直傻了啊QAQ,这个题怎么都做了这么长时间啊。。

//1700kb	200ms
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 500000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
#define abs(x) (x<0?-(x):x)
typedef long long LL;
const int N=1e6+5; int A[N];
char IN[MAXIN],*SS=IN,*TT=IN; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
} int main()
{
int n=read(); LL aver=0;
for(int i=1; i<=n; ++i) aver+=A[i]=read();
aver/=n;
for(int i=1; i<=n; ++i) A[i]=A[i]-aver+A[i-1];
std::nth_element(A+1,A+(n+1>>1),A+n+1);
LL ans=0;
for(int i=1,mid=A[n+1>>1]; i<=n; ++i) ans+=abs(A[i]-mid);
printf("%lld\n",ans); return 0;
}

BZOJ.3293.[CQOI2011]分金币(思路)的更多相关文章

  1. BZOJ3293: [Cqoi2011]分金币(数学)

    3293: [Cqoi2011]分金币 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1596  Solved: 969[Submit][Status ...

  2. BZOJ3293: [Cqoi2011]分金币

    Description 圆桌上坐着n个人,每人有一定数量的金币,金币总数能被n整除.每个人可以给他左右相邻的人一些金币,最终使得每个人的金币数目相等.你的任务是求出被转手的金币数量的最小值. Inpu ...

  3. bzoj3293 [Cqoi2011]分金币&&bzoj1045 [HAOI2008]糖果传递

    Description 圆桌上坐着n个人,每人有一定数量的金币,金币总数能被n整除.每个人可以给他左右相邻的人一些金币,最终使得每个人的金币数目相等.你的任务是求出被转手的金币数量的最小值. Inpu ...

  4. [BZOJ3293] [Cqoi2011] 分金币 (贪心)

    Description 圆桌上坐着n个人,每人有一定数量的金币,金币总数能被n整除.每个人可以给他左右相邻的人一些金币,最终使得每个人的金币数目相等.你的任务是求出被转手的金币数量的最小值. Inpu ...

  5. BZOJ1045 [HAOI2008]糖果传递 && BZOJ3293 [Cqoi2011]分金币

    Description 有n个小朋友坐成一圈,每人有ai个糖果.每人只能给左右两人传递糖果.每人每次传递一个糖果代价为1. Input 第一行一个正整数nn<=1'000'000,表示小朋友的个 ...

  6. 贪心+数学【p3156】 [CQOI2011]分金币 ([HAOI2008]糖果传递)

    题目描述 圆桌上坐着n个人,每人有一定数量的金币,金币总数能被n整除.每个人可以给他左右相邻的人一些金币,最终使得每个人的金币数目相等.你的任务是求出被转手的金币数量的最小值. 分析: 设: 每个人最 ...

  7. CQOI2011分金币&HAOI2008糖果传递

    双倍经验…… 没想到白书上竟然有……我还看过……还忘了…… 抄份题解: A1 + X1 - X2 = G A2 + X2 - X3 = G . . . An + Xn - X1 = G 解得 X1 = ...

  8. P2512 [HAOI2008]糖果传递&&P3156 [CQOI2011]分金币&&P4016 负载平衡问题

    P2512 [HAOI2008]糖果传递 第一步,当然是把数据减去平均数,然后我们可以得出一串正负不等的数列 我们用sum数组存该数列的前缀和.注意sum[ n ]=0 假设为链,那么可以得出答案为a ...

  9. (洛谷P2512||bzoj1045) [HAOI2008]糖果传递 || 洛谷P4016 负载平衡问题 || UVA11300 Spreading the Wealth || (洛谷P3156||bzoj3293) [CQOI2011]分金币

    bzoj1045 洛谷P4016 洛谷P2512 bzoj3293 洛谷P3156 题解:https://www.luogu.org/blog/LittleRewriter/solution-p251 ...

随机推荐

  1. API接口加密方式说明

    标签: 接口 2016年10月11日 19:41:20 13299人阅读 评论(0) 收藏 举报  分类: API(5)  版权声明:本文为博主原创文章,未经博主允许不得转载. http://blog ...

  2. jmeter 中如何一次运行多条sql语句

    在jmeter测试mysql中如何一次运行多条sql语句 allowMultiQueries=true 注意:太低版本的mysql和jdbc不支持,最好用最新版的

  3. Python函数之递归函数

    递归函数的定义:在这个函数里再调用这个函数本身 最大递归深度默认是997或者998,python从内存角度做的限制 优点:代码变简单 缺点:占内存 一:推导年龄 问a的值是多少: a 比 b 小2,b ...

  4. Github版本管理以及git使用

    1.git客户端编译安装 同步系统时间服务器 ntpdate cn.ntp.org.cn 安装依赖包: [root@baolin ~]# yum install epel-release -y [ro ...

  5. asp.net core 中间件应用

    中间件是一种装配到应用管道以处理请求和响应的软件. 每个组件: 选择是否将请求传递到管道中的下一个组件. 可在调用管道中的下一个组件前后执行工作. 请求委托(Request delegates)用于生 ...

  6. 一脸懵逼学习HBase的搭建(注意HBase的版本)

    1:Hdfs分布式文件系统存的文件,文件存储. 2:Hbase是存储的数据,海量数据存储,作用是缓存的数据,将缓存的数据满后写入到Hdfs中. 3:hbase集群中的角色: ().一个或者多个主节点, ...

  7. rabbitmq3.7.5 centos7 安装笔记

    先安装各种依赖文件: yum -y install gcc glibc-devel make ncurses-devel openssl-devel xmlto perl wget vim 1. ra ...

  8. OpenJDK-study-001 windows上安装Mercurial 4.4.1 克隆OPENJDK版本库

     下载安装 1.下载Mercurial 进入https://www.mercurial-scm.org/wiki/Mercurial下载,windows上傻瓜式安装的,安装好之后,命令行进入安装目录, ...

  9. COOKIE和SESSION有什么区别?

    1,位置--session 在服务器端,cookie 在客户端(浏览器)2,形式--session 默认被存在在服务器的一个文件里(session 可以放在 文件.数据库.或内存中都可以),cooki ...

  10. signal() 和 sigaction()

    [摘自<Linux/Unix系统编程手册>] Unix系统提供了两种方式来改变信号处置:signal() 和 sigaction(). signal() 的行为在不同Unix实现间存在差异 ...