YOLO系列:YOLO v3解析
本文好多内容转载自
https://blog.csdn.net/leviopku/article/details/82660381
yolo_v3 提供替换backbone。要想性能牛叉,backbone可以用Darknet-53,要想轻量高速,可以用tiny-darknet
首先,看一下YOLOV3网络结构

DBL: 如图1左下角所示,也就是代码中的Darknetconv2d_BN_Leaky,是yolo_v3的基本组件。就是卷积+BN+Leaky relu。对于v3来说,BN和leaky relu已经是和卷积层不可分离的部分了(最后一层卷积除外),共同构成了最小组件。
resn:n代表数字,有res1,res2, … ,res8等等,表示这个res_block里含有多少个res_unit。这是yolo_v3的大组件,yolo_v3开始借鉴了ResNet的残差结构,使用这种结构可以让网络结构更深(从v2的darknet-19上升到v3的darknet-53,前者没有残差结构)。对于res_block的解释,可以在图1的右下角直观看到,其基本组件也是DBL。
concat:张量拼接。将darknet中间层和后面的某一层的上采样进行拼接。拼接的操作和残差层add的操作是不一样的,拼接会扩充张量的维度,而add只是直接相加不会导致张量维度的改变。
layers数量一共有252层,包括add层23层(主要用于res_block的构成,每个res_unit需要一个add层,一共有1+2+8+8+4=23层)。除此之外,BN层和LeakyReLU层数量完全一样(72层),在网络结构中的表现为:每一层BN后面都会接一层LeakyReLU。卷积层一共有75层,其中有72层后面都会接BN+LeakyReLU的组合构成基本组件DBL。看结构图,可以发现上采样和concat都有2次,和表格分析中对应上。每个res_block都会用上一个零填充,一共有5个res_block
其次,看一下output
对于图1而言,更值得关注的是输出张量:
yolo v3输出了3个不同尺度的feature map,如上图所示的y1, y2, y3。这也是v3论文中提到的为数不多的改进点:predictions across scales
这个借鉴了FPN(feature pyramid networks),采用多尺度来对不同size的目标进行检测,越精细的grid cell就可以检测出越精细的物体。
y1,y2和y3的深度都是255,边长的规律是13:26:52
对于COCO有80个种类,所以每个box应该对每个种类都输出一个概率。
yolo v3设定的是每个网格单元预测3个box,所以每个box需要有(x, y, w, h, confidence)五个基本参数,然后还要有80个类别的概率。所以3*(5 + 80) = 255。这个255就是这么来的。)
v3用上采样的方法来实现这种多尺度的feature map,可以结合图1和图2右边来看,图1中concat连接的两个张量是具有一样尺度的(两处拼接分别是26x26尺度拼接和52x52尺度拼接,通过(2, 2)上采样来保证concat拼接的张量尺度相同)。作者并没有像SSD那样直接采用backbone中间层的处理结果作为feature map的输出,而是和后面网络层的上采样结果进行一个拼接之后的处理结果作为feature map。
最后,总结一下
上文把yolo_v3的结构讨论了一下,下文将对yolo v3的若干细节进行剖析。
Bounding Box Prediction
b-box预测手段是v3论文中提到的又一个亮点。先回忆一下v2的b-box预测:想借鉴faster R-CNN RPN中的anchor机制,但不屑于手动设定anchor prior(模板框),于是用维度聚类的方法来确定anchor box prior(模板框),最后发现聚类之后确定的prior在k=5也能够又不错的表现,于是就选用k=5。后来呢,v2又嫌弃anchor机制线性回归的不稳定性(因为回归的offset可以使box偏移到图片的任何地方),所以v2最后选用了自己的方法:直接预测相对位置。预测出b-box中心点相对于网格单元左上角的相对坐标。


YOLO系列:YOLO v3解析的更多相关文章
- YOLO系列梳理(三)YOLOv5
前言 YOLOv5 是在 YOLOv4 出来之后没多久就横空出世了.今天笔者介绍一下 YOLOv5 的相关知识.目前 YOLOv5 发布了新的版本,6.0版本.在这里,YOLOv5 也在5.0基 ...
- 深度剖析YOLO系列的原理
深度剖析YOLO系列的原理 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/12072225.html 目录 1. ...
- YOLO系列梳理(一)YOLOv1-YOLOv3
前言 本文是YOLO系列专栏的第一篇,该专栏将会介绍YOLO系列文章的算法原理.代码解析.模型部署等一系列内容.本文系公众号读者投稿,欢迎想写任何系列文章的读者给我们投稿,共同打造一个计算机视觉技 ...
- 目标检测复习之YOLO系列
目标检测之YOLO系列 YOLOV1: blogs1: YOLOv1算法理解 blogs2: <机器爱学习>YOLO v1深入理解 网络结构 激活函数(leaky rectified li ...
- 深度学习与CV教程(13) | 目标检测 (SSD,YOLO系列)
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...
- 小白也能弄得懂的目标检测YOLO系列之YOLOv1网络训练
上期给大家介绍了YOLO模型的检测系统和具体实现,YOLO是如何进行目标定位和目标分类的,这期主要给大家介绍YOLO是如何进行网络训练的,话不多说,马上开始! 前言: 输入图片首先被分成S*S个网格c ...
- 小白也能弄懂的目标检测之YOLO系列 - 第一期
大家好,上期分享了电脑端几个免费无广告且实用的录屏软件,这期想给大家来讲解YOLO这个算法,从零基础学起,并最终学会YOLOV3的Pytorch实现,并学会自己制作数据集进行模型训练,然后用自己训练好 ...
- Sharepoint学习笔记—习题系列--70-576习题解析 --索引目录
Sharepoint学习笔记—习题系列--70-576习题解析 为便于查阅,这里整理并列出了70-576习题解析系列的所有问题,有些内容可能会在以后更新. 需要事先申明的是: 1. ...
- Sharepoint学习笔记—习题系列--70-573习题解析 --索引目录
Sharepoint学习笔记—习题系列--70-573习题解析 为便于查阅,这里整理并列出了我前面播客中的关于70-573习题解析系列的所有问题,有些内容可能会在以后更新, ...
- [置顶] Android学习系列-Android中解析xml(7)
Android学习系列-Android中解析xml(7) 一,概述 1,一个是DOM,它是生成一个树,有了树以后你搜索.查找都可以做. 2,另一种是基于流的,就是解析器从头到尾解析一遍xml文件. ...
随机推荐
- Python基础之类方法和静态方法
小叙一会儿: 通常情况下,在类中定义的所有函数(注意了,这里说的就是所有,跟self啥的没关系,self也只是一个再普通不过 的参数而已)都是对象的绑定方法,对象在调用绑定方法时会自动将自己作为参数传 ...
- 51Nod 1265 四点共面(计算几何)
1265 四点共面 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4点共线也算共面). ...
- epoll(二)
epoll概念 epoll对文件描述符的操作方式有两种工作模式:LT模式(Level Trigger,水平触发) 和ET模式(Edge Trigger,边缘触发). LT模式:当epoll_wait检 ...
- Java 骚操作--生成二维码
https://www.cnblogs.com/lsy131479/p/8808172.html
- Java集合中List,Set以及Map等集合体系详解(史上最全)
https://blog.csdn.net/zhangqunshuai/article/details/80660974
- spring的4种事务特性,5种隔离级别,7种传播行为
spring事务: 事务: 事务逻辑上的一组操作,组成这组操作的各个逻辑单元,要么一起成功,要么一起失败. 事务特性(4种): 原子性 (atomicity):强调事务的不可分割. 一致性 (con ...
- Maven+SpringMVC+SpringFox+Swagger整合示例
查考链接:https://my.oschina.net/wangmengjun/blog/907679 coding地址:https://git.coding.net/conding_hjy/Spri ...
- Windows 7下java SDK下载、安装及环境变量设置
第一步:下载Java JDK 1 登录官网站下载正版JDK 2 点击"SDK Download"进入Java JDK下载页面 注明: Java JDK和Java JRE区别 ...
- mysql基本操作(二)
1.向表msg中插入数据,先创建表,再插入数据 mysql> create table msg ( -> id int, -> title varchar(60), -> na ...
- Python_二维数组
例1:将数组旋转90度 a = [[i for i in range(4)] for n in range(4)] print(a) # 遍历大序列 for a_index, w in enumera ...