本文好多内容转载自

https://blog.csdn.net/leviopku/article/details/82660381

yolo_v3 提供替换backbone。要想性能牛叉,backbone可以用Darknet-53,要想轻量高速,可以用tiny-darknet

首先,看一下YOLOV3网络结构

DBL: 如图1左下角所示,也就是代码中的Darknetconv2d_BN_Leaky,是yolo_v3的基本组件。就是卷积+BN+Leaky relu。对于v3来说,BN和leaky relu已经是和卷积层不可分离的部分了(最后一层卷积除外),共同构成了最小组件。

resn:n代表数字,有res1,res2, … ,res8等等,表示这个res_block里含有多少个res_unit。这是yolo_v3的大组件,yolo_v3开始借鉴了ResNet的残差结构,使用这种结构可以让网络结构更深(从v2的darknet-19上升到v3的darknet-53,前者没有残差结构)。对于res_block的解释,可以在图1的右下角直观看到,其基本组件也是DBL。

concat:张量拼接。将darknet中间层和后面的某一层的上采样进行拼接。拼接的操作和残差层add的操作是不一样的,拼接会扩充张量的维度,而add只是直接相加不会导致张量维度的改变。

layers数量一共有252层,包括add层23层(主要用于res_block的构成,每个res_unit需要一个add层,一共有1+2+8+8+4=23层)。除此之外,BN层和LeakyReLU层数量完全一样(72层),在网络结构中的表现为:每一层BN后面都会接一层LeakyReLU。卷积层一共有75层,其中有72层后面都会接BN+LeakyReLU的组合构成基本组件DBL。看结构图,可以发现上采样和concat都有2次,和表格分析中对应上。每个res_block都会用上一个零填充,一共有5个res_block

其次,看一下output

对于图1而言,更值得关注的是输出张量:



yolo v3输出了3个不同尺度的feature map,如上图所示的y1, y2, y3。这也是v3论文中提到的为数不多的改进点:predictions across scales

这个借鉴了FPN(feature pyramid networks),采用多尺度来对不同size的目标进行检测,越精细的grid cell就可以检测出越精细的物体。

y1,y2和y3的深度都是255,边长的规律是13:26:52

对于COCO有80个种类,所以每个box应该对每个种类都输出一个概率。

yolo v3设定的是每个网格单元预测3个box,所以每个box需要有(x, y, w, h, confidence)五个基本参数,然后还要有80个类别的概率。所以3*(5 + 80) = 255。这个255就是这么来的。)
v3用上采样的方法来实现这种多尺度的feature map,可以结合图1和图2右边来看,图1中concat连接的两个张量是具有一样尺度的(两处拼接分别是26x26尺度拼接和52x52尺度拼接,通过(2, 2)上采样来保证concat拼接的张量尺度相同)。作者并没有像SSD那样直接采用backbone中间层的处理结果作为feature map的输出,而是和后面网络层的上采样结果进行一个拼接之后的处理结果作为feature map。

最后,总结一下

上文把yolo_v3的结构讨论了一下,下文将对yolo v3的若干细节进行剖析。

Bounding Box Prediction

b-box预测手段是v3论文中提到的又一个亮点。先回忆一下v2的b-box预测:想借鉴faster R-CNN RPN中的anchor机制,但不屑于手动设定anchor prior(模板框),于是用维度聚类的方法来确定anchor box prior(模板框),最后发现聚类之后确定的prior在k=5也能够又不错的表现,于是就选用k=5。后来呢,v2又嫌弃anchor机制线性回归的不稳定性(因为回归的offset可以使box偏移到图片的任何地方),所以v2最后选用了自己的方法:直接预测相对位置。预测出b-box中心点相对于网格单元左上角的相对坐标。



YOLO系列:YOLO v3解析的更多相关文章

  1. YOLO系列梳理(三)YOLOv5

    ​  前言 YOLOv5 是在 YOLOv4 出来之后没多久就横空出世了.今天笔者介绍一下 YOLOv5 的相关知识.目前 YOLOv5 发布了新的版本,6.0版本.在这里,YOLOv5 也在5.0基 ...

  2. 深度剖析YOLO系列的原理

    深度剖析YOLO系列的原理 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/12072225.html 目录 1. ...

  3. YOLO系列梳理(一)YOLOv1-YOLOv3

    ​ 前言 本文是YOLO系列专栏的第一篇,该专栏将会介绍YOLO系列文章的算法原理.代码解析.模型部署等一系列内容.本文系公众号读者投稿,欢迎想写任何系列文章的读者给我们投稿,共同打造一个计算机视觉技 ...

  4. 目标检测复习之YOLO系列

    目标检测之YOLO系列 YOLOV1: blogs1: YOLOv1算法理解 blogs2: <机器爱学习>YOLO v1深入理解 网络结构 激活函数(leaky rectified li ...

  5. 深度学习与CV教程(13) | 目标检测 (SSD,YOLO系列)

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...

  6. 小白也能弄得懂的目标检测YOLO系列之YOLOv1网络训练

    上期给大家介绍了YOLO模型的检测系统和具体实现,YOLO是如何进行目标定位和目标分类的,这期主要给大家介绍YOLO是如何进行网络训练的,话不多说,马上开始! 前言: 输入图片首先被分成S*S个网格c ...

  7. 小白也能弄懂的目标检测之YOLO系列 - 第一期

    大家好,上期分享了电脑端几个免费无广告且实用的录屏软件,这期想给大家来讲解YOLO这个算法,从零基础学起,并最终学会YOLOV3的Pytorch实现,并学会自己制作数据集进行模型训练,然后用自己训练好 ...

  8. Sharepoint学习笔记—习题系列--70-576习题解析 --索引目录

        Sharepoint学习笔记—习题系列--70-576习题解析  为便于查阅,这里整理并列出了70-576习题解析系列的所有问题,有些内容可能会在以后更新. 需要事先申明的是:     1. ...

  9. Sharepoint学习笔记—习题系列--70-573习题解析 --索引目录

                  Sharepoint学习笔记—习题系列--70-573习题解析 为便于查阅,这里整理并列出了我前面播客中的关于70-573习题解析系列的所有问题,有些内容可能会在以后更新, ...

  10. [置顶] Android学习系列-Android中解析xml(7)

    Android学习系列-Android中解析xml(7) 一,概述 1,一个是DOM,它是生成一个树,有了树以后你搜索.查找都可以做. 2,另一种是基于流的,就是解析器从头到尾解析一遍xml文件.   ...

随机推荐

  1. mysql数据库之基本操作和存储引擎

    一.知识储备 数据库服务器:一台计算机(对内存要求比较高) 数据库管理系统:如mysql,是一个软件 数据库:oldboy_stu,相当于文件夹 表:student,scholl,class_list ...

  2. django之数据库表的单表查询

    一.添加表记录 对于单表有两种方式 # 添加数据的两种方式 # 方式一:实例化对象就是一条表记录 Frank_obj = models.Student(name ="海东",cou ...

  3. selenium+python-autoit文件上传

    前言 关于非input文件上传,点上传按钮后,这个弹出的windows的控件了,已经跳出三界之外了,不属于selenium的管辖范围(selenium不是万能的,只能操作web上元素).autoit工 ...

  4. PAT Basic 1071. 小赌怡情(15)

    题目内容 常言道"小赌怡情".这是一个很简单的小游戏:首先由计算机给出第一个整数:然后玩家下注赌第二个整数将会比第一个数大还是小:玩家下注t个筹码后,计算机给出第二个数.若玩家猜对 ...

  5. python requests 正则爬虫

    代码: import requests from multiprocessing import Pool from requests.exceptions import RequestExceptio ...

  6. windows下载安装MariaDB10.2.17 绿色版

    1.下载 https://mirrors.tuna.tsinghua.edu.cn/mariadb//mariadb-10.2.17/winx64-packages/mariadb-10.2.17-w ...

  7. snmp对超过16T的磁盘大小识别不对的解决办法

    https://blog.csdn.net/redleaf0000/article/details/38303299

  8. 旋转矩阵 The Rotation Matrix

    参考: http://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/geometry/how-does ...

  9. 记录一次因代理Controller产生的404问题

    spring 3.2.4 为了给每一个controller配置一个拦截器链 import com.google.common.collect.Lists; import org.aopalliance ...

  10. ExceptionLess的webAPI调用

    引用 <package id="bootstrap" version="3.0.0" targetFramework="net461" ...