把入侵者看作边,每一行每一列都是点,选取某一行某一列都有费用,这样问题就是选总权最小的点集覆盖所有边,就是最小点权覆盖。

此外,题目的总花费是所有费用的乘积,这时有个技巧,就是取对数,把乘法变为加法运算,最后再还原。

另外还可以从最小割的思路去这么理解:

每一行与源点相连,容量为该行的花费;每一列与汇点相连,容量为该列的花费;对于每个入侵者的坐标,该行该列连接一条容量INF的边。

要让源点汇点不连通,割边集必然与所有入侵者的行或列相关,而这样建模后的最小割就是最小的花费(容量INF的边必然不是最小割的一部分,其余的必然会选择某行或某列)。

 #include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
#include<algorithm>
using namespace std;
#define INF (1<<30)
#define MAXN 111
#define MAXM 1111 struct Edge{
int v,cap,flow,next;
}edge[MAXM];
int vs,vt,NE,NV;
int head[MAXN]; void addEdge(int u,int v,int cap){
edge[NE].v=v; edge[NE].cap=cap; edge[NE].flow=;
edge[NE].next=head[u]; head[u]=NE++;
edge[NE].v=u; edge[NE].cap=; edge[NE].flow=;
edge[NE].next=head[v]; head[v]=NE++;
} int level[MAXN];
int gap[MAXN];
void bfs(){
memset(level,-,sizeof(level));
memset(gap,,sizeof(gap));
level[vt]=;
gap[level[vt]]++;
queue<int> que;
que.push(vt);
while(!que.empty()){
int u=que.front(); que.pop();
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(level[v]!=-) continue;
level[v]=level[u]+;
gap[level[v]]++;
que.push(v);
}
}
} int pre[MAXN];
int cur[MAXN];
int ISAP(){
bfs();
memset(pre,-,sizeof(pre));
memcpy(cur,head,sizeof(head));
int u=pre[vs]=vs,flow=,aug=INF;
gap[]=NV;
while(level[vs]<NV){
bool flag=false;
for(int &i=cur[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[u]==level[v]+){
flag=true;
pre[v]=u;
u=v;
//aug=(aug==-1?edge[i].cap:min(aug,edge[i].cap));
aug=min(aug,edge[i].cap-edge[i].flow);
if(v==vt){
flow+=aug;
for(u=pre[v]; v!=vs; v=u,u=pre[u]){
edge[cur[u]].flow+=aug;
edge[cur[u]^].flow-=aug;
}
//aug=-1;
aug=INF;
}
break;
}
}
if(flag) continue;
int minlevel=NV;
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[v]<minlevel){
minlevel=level[v];
cur[u]=i;
}
}
if(--gap[level[u]]==) break;
level[u]=minlevel+;
gap[level[u]]++;
u=pre[u];
}
return flow;
}
int main(){
double f;
int t,n,m,l,a,b;
scanf("%d",&t);
while(t--){
scanf("%d%d%d",&n,&m,&l);
vs=; vt=n+m+; NV=vt+; NE=;
memset(head,-,sizeof(head));
for(int i=; i<=n; ++i){
scanf("%f",&f);
addEdge(vs,i,log10(f));
}
for(int i=; i<=m; ++i){
scanf("%f",&f);
addEdge(i+n,vt,log10(f));
}
while(l--){
scanf("%d%d",&a,&b);
addEdge(a,b+n,INF);
}
printf("%.4f\n",pow(,ISAP()));
}
return ;
}

POJ3308 Paratroopers(最小割/二分图最小点权覆盖)的更多相关文章

  1. 【最小割/二分图最大独立集】【网络流24题】【P2774】 方格取数问题

    Description 给定一个 \(n~\times~m\) 的矩阵,每个位置有一个正整数,选择一些互不相邻的数,最大化权值和 Limitation \(1~\leq~n,~m~\leq~100\) ...

  2. ZOJ 3792 Romantic Value 最小割(最小费用下最小边数)

    求最小割及最小花费 把边权c = c*10000+1 然后跑一个最小割,则flow / 10000就是费用 flow%10000就是边数. 且是边数最少的情况.. #include<stdio. ...

  3. bzoj2229: [Zjoi2011]最小割(分治最小割+最小割树思想)

    2229: [Zjoi2011]最小割 题目:传送门 题解: 一道非常好的题目啊!!! 蒟蒻的想法:暴力枚举点对跑最小割记录...绝对爆炸啊.... 开始怀疑是不是题目骗人...难道根本不用网络流?? ...

  4. BZOJ_1797_[Ahoi2009]Mincut 最小割_最小割+tarjan

    BZOJ_1797_[Ahoi2009]Mincut 最小割_最小割+tarjan Description A,B两个国家正在交战,其中A国的物资运输网中有N个中转站,M条单向道路.设其中第i (1≤ ...

  5. HDU 4859 海岸线(最小割+最大独立点权变形)

    http://acm.hdu.edu.cn/showproblem.php?pid=4859 题意: 欢迎来到珠海!由于土地资源越来越紧张,使得许多海滨城市都只能依靠填海来扩展市区以求发展.作为Z市的 ...

  6. [学习笔记]最小割之最小点权覆盖&&最大点权独立集

    最小点权覆盖 给出一个二分图,每个点有一个非负点权 要求选出一些点构成一个覆盖,问点权最小是多少 建模: S到左部点,容量为点权 右部点到T,容量为点权 左部点到右部点的边,容量inf 求最小割即可. ...

  7. BZOJ 1934 Vote 善意的投票(最小割+二分图)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1934 题目大意: 幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉.对他们来说,这个问题 ...

  8. bzoj1001/luogu4001 狼抓兔子 (最小割/平面图最小割转对偶图最短路)

    平面图转对偶图:先在原图中加一个s->t的边,然后对每个面建一个点,对每条分隔两个面的边加一条连接这两个面对应点的边,边权等于原边权. 然后从刚才加的s->t分割出来的两面对应的两个点跑最 ...

  9. bzoj4519: [Cqoi2016]不同的最小割(最小割树)

    传送门 好神仙……最小割树是个什么东西…… 其实我觉得干脆直接$O(n^2)$跑几个dinic算了…… 来说一下这个叫最小割树的神奇东西 我们先建一个$n$个点,没有边的无向图 在原图中任选两点$s, ...

随机推荐

  1. Eclipse 安装SVN

    地址:http://wenku.baidu.com/link?url=ntQy2-1CjlNyUpO0-4uhROrc9jCo12Yifh7MkPULmY_dCybl6SEH99SxYxEbZQEiW ...

  2. web页面记住密码存在安全问题 - 处理方式

    现在一般安全网站都不会做记住密码功能,因为记住密码存在安全缺陷. 不考虑网络拦截问题,如果是登录页面记住密码,第二次登录,直接进入开发者模式修改类型为text即可看到密码. 处理方式: 1.把auto ...

  3. 再来一发!DB2 应用程序如何从数据库取数据 Fetch

    The FETCH statement positions a cursor on the next row of its result table and assigns the values of ...

  4. React Native实例之房产搜索APP

    React Native 开发越来越火了,web app也是未来的潮流, 现在react native已经可以完成一些最基本的功能. 通过开发一些简单的应用, 可以更加熟练的掌握 RN 的知识. 在学 ...

  5. python 中内存映射二进制文件

    内存映射一个文件并不会导致整个文件被读取到内存中. 也就是说,文件并没有被复制到内存缓存或数组中.相反,操作系统仅仅为文件内容保留了一段虚拟内存. 当你访问文件的不同区域时,这些区域的内容才根据需要被 ...

  6. 前端模板artTemplate,handlerbars的使用心得

    写前端页面肯定离不开模板渲染,就近期项目中用的两个前端模板做一些使用总结,顺便复习一下,也方便后面温故. 1,artTemplate 优点: 1,一般web端用得较多,执行速度通常是 Mustache ...

  7. php支付宝接口用法

    现在流行的网站支持平台,支付宝当仁不让的老大了,现在我们就来告诉你如何使用支付宝api来做第三方支付,把支付宝放到自己网站来, alipay_config.php配置程序如下: <?php */ ...

  8. Delphi线程的终止

    当线程对象的Execute()执行完毕,我们就认为此线程终止了.这时候,它会调用Delphi的一个标准例程EndThread(),这个例程再调用API函数ExitThread().由ExitThrea ...

  9. Delphi编程建议遵守的规范2---命名规范

    1.1.形参命名建议 所有形参的名称都应当表达出它的用途.如果合适的话,形参的名称最好以字母a 为前缀,例如: procedure SomeProc(aUserName:string; aUserAg ...

  10. 关于strcpy_s

    #include"stdafx.h" #include<iostream> #include<cstring> int main() { using nam ...