最大流=最小割,而因为本题点的度数不超过3,所以最小割不超过3,EK算法的复杂度为$O(n+m)$。

通过分治求出最小割树,设$f[i][j][k]$表示最小割为$i$时,$j$点在第$k$次分治过程中是否与$S$连通,$h[i][j]$为$f[i][j][k]$的hash值,那么如果$h[k][i]=h[k][j]$,则说明$i$和$j$之间的最小割不超过$k$。

时间复杂度$O(n(n+m))$,需要大量常数优化。

#include<cstdio>
#include<cstring>
#define N 3010
struct E{short u,v,nxt,f;}e[9010];
int n,m,i,j,k,a[N],S,T,ed=1,g[N],h[N],q[N],maxflow,ans;unsigned int hash[4][N],pos=1;
inline void add(int u,int v,int f){e[++ed].u=u;e[ed].v=v;e[ed].f=f;e[ed].nxt=g[u];g[u]=ed;}
inline bool bfs(){
int*l=q,*r=q+1,i;
memset(h+1,-1,sizeof(int)*n);
h[q[0]=S]=0;
while(l<r)for(i=g[*l++];i;i=e[i].nxt)if(h[e[i].v]<0&&e[i].f)h[*r++=e[i].v]=i;
return h[T]!=-1;
}
void solve(int l,int r){
if(l>=r)return;
int i,j;
for(i=2;i<=ed;i++)e[i].f=e[i^1].f=1;
S=a[r],T=a[l],maxflow=0;
while(bfs())for(maxflow++,i=T;i!=S;i=e[j].u)e[j=h[i]].f--,e[j^1].f++;
unsigned int*p=hash[maxflow]+1;
for(pos*=233,i=1;i<=n;p++)if(~h[i++])*p+=pos;
int*L=q+l,*R=q+r,*k=a+l;
while(k<=a+r)if(h[*k]<0)*L++=*k++;else *R--=*k++;
memcpy(a+l,q+l,sizeof(int)*(r-l+1));
solve(l,R-q),solve(L-q,r);
}
int main(){
scanf("%d%d",&n,&m);
while(m--)scanf("%d%d",&i,&j),add(i,j,1),add(j,i,1);
for(i=1;i<=n;i++)a[i]=i;
solve(1,n);
for(i=1;i<=n;i++)for(j=i+1;j<=n;j++)for(k=0;k<4;k++)if(hash[k][i]!=hash[k][j]){ans+=k;break;}
return printf("%d",ans),0;
}

  

BZOJ4435 : [Cerc2015]Juice Junctions的更多相关文章

  1. BZOJ4435——[Cerc2015]Juice Junctions

    0.题目大意:求两点之间的最小割之和 1.分析:很明显,最小割树,我们发现这个题并不能用n^3的方法来求答案.. 所以我们记录下所有的边,然后把边从大到小排序,然后跑一边类似kruskal的东西,顺便 ...

  2. bzoj4435: [Cerc2015]Juice Junctions(最小割树+hash)

    传送门 首先最大流等于最小割,那么可以转化为最小割树来做(不知道什么是最小割树的可以看看这题->这里) 具体的做法似乎是$hash[i][j]$表示最小割为$i$时点$j$是否与$S$连通 然后 ...

  3. 【BZOJ4435】[Cerc2015]Juice Junctions Tarjan+hash

    [BZOJ4435][Cerc2015]Juice Junctions Description 你被雇佣升级一个旧果汁加工厂的橙汁运输系统.系统有管道和节点构成.每条管道都是双向的,且每条管道的流量都 ...

  4. 【BZOJ-4435】Juice Junctions 最小割树(分治+最小割)+Hash

    4435: [Cerc2015]Juice Junctions Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 20  Solved: 11[Submi ...

  5. BZOJ 4435 [Cerc2015]Juice Junctions 分治最小割+hash

    分治最小割的题目,要求n2. 之前用的n3的方法自然不能用了. 于是用hash,设hash[i][j]表示在最小割为i的时候,j是否与S联通. 看懂这个需要理解一下最小割树的构造. 这种题建议用EK写 ...

  6. [CERC2015]Juice Junctions(边双连通+字符串hash)

    做法 考虑边数限制的特殊条件,显然答案仅有\(\{0,1,2,3\}\) 0:不联通 1:连通 2:边双连通 3:任意删掉一条边都为边双连通 考虑每次删边后记录各点的边双染色情况来特判\(3\):是否 ...

  7. Juice Junctions

    Juice Junctions 题目描述 你被雇佣升级一个旧果汁加工厂的橙汁运输系统.系统有管道和节点构成.每条管道都是双向的,且每条管道的流量都是11升每秒.管道可能连接节点,每个节点最多可以连接3 ...

  8. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  9. Gym - 101480 CERC 15:部分题目题解(队内第N次训练)

    -------------------题目难度较难,但挺有营养的.慢慢补. A .ASCII Addition pro:用一定的形式表示1到9,让你计算加法. sol:模拟. solved by fz ...

随机推荐

  1. 20145206邹京儒《Java程序设计》课程总结

    20145206邹京儒<Java程序设计>课程总结 (按顺序)每周读书笔记链接汇总 第一周:http://www.cnblogs.com/ZouJR/p/5213572.html http ...

  2. php 会话控制

    会话控制 HTTP协议,在TCP协议基础上的HTTP协议称为无状态协议 SESSION COOKIE SESSION特点:1.存储在服务器.2.每个使用者都会生成一个SESSION.3.有默认的过期时 ...

  3. sp_who使用

    [SQL Server]  sp_who, sp_who2和sp_who3 sp_who可以返回如下信息: (可选参数LoginName, 或active代表活动会话数)Spid         (系 ...

  4. Android Attr -- Understanding Android Custom Attributes

    原文:http://androidbook.com/item/4169

  5. .net学习笔记----WebConfig常用配置节点介绍

    一.配置文件入门 .Net提供了一种保存项目配置信息的办法,就是利用配置文件,配置文件的后缀一般是.config.在WinForm程序中配置文件一般是App.config.在Asp.net中一般默认是 ...

  6. Jquery学习笔记--性能优化建议

    一.选择器性能优化建议 1. 总是从#id选择器来继承 这是jQuery选择器的一条黄金法则.jQuery选择一个元素最快的方法就是用ID来选择了. 1 $('#content').hide(); 或 ...

  7. java web开发环境配置

    一:安装jdk   http://www.java.com/zh_TW/ 二:下载tomcat,这里是zip版.http://tomcat.apache.org/download-70.cgi 三:在 ...

  8. 等号赋值与memcpy的效率问题

    转自:http://www.aiuxian.com/article/p-1309055.html 偶尔看到一个说法,说,小内存的拷贝,使用等号直接赋值比memcpy快得多.结合自己搜集到的资料,整理成 ...

  9. linux命令执行返回值(附错误对照表)

    转自:http://blog.sina.com.cn/s/blog_6739945f0100zt4b.html 在 Linux 下,不管你是启动一个桌面程序也好,还是在控制台下运行命令,所有的程序在结 ...

  10. 静态/动态函数库设计,王明学learn

    静态/动态函数库设计 Linux应用程序设计中需要的外部函数主要由函数库和系统调用来提供. 两者区别: 一.函数库分类 函数库按照链接方式可分为: 1.静态链接库 对函数库的链接是放在编译时期(com ...