hihoCoder 1303 数论六·模线性方程组
Description
求解模线性方程组, \(m_i\) 不互质.
Sol
扩展欧几里得+中国剩余定理.
首先两两合并跟上篇博文一样.
每次通解就是每次增加两个数的最小公倍数,这对取模任意一个数都是0.
伪代码如下
M = m[1], R = r[1]
For i = 2 .. N
d = gcd(M, m[i])
c = r[i] - R
If (c mod d) Then // 无解的情况
Return -1
End If
(k1, k2) = extend_gcd(M / d, m[i] / d) // 扩展欧几里德计算k1,k2
k1 = (c / d * k1) mod (m[i] / d) // 扩展解系
R = R + k1 * M // 计算x = m[1] * k[1] + r[1]
M = M / d * m[i] // 求解lcm(M, m[i])
R %= M // 求解合并后的新R,同时让R最小
End For
If (R < 0) Then
R = R + M
End If
Return R
Code
#include<cstdio>
#include<utility>
#include<algorithm>
#include<iostream>
using namespace std; typedef long long LL;
#define mpr make_pair
const int N = 1005; LL n,a1,a2,b1,b2;
pair< LL,LL > m[N]; inline LL in(LL x=0,char ch=getchar()){ while(ch>'9' || ch<'0') ch=getchar();
while(ch>='0' && ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();return x; }
LL Exgcd(LL a,LL b,LL &x,LL &y){
if(!b){ x=1,y=0;return a; }
LL r=Exgcd(b,a%b,x,y);LL t=x;
x=y,y=t-(a/b)*y;return r;
}
int Solve(){
LL x,y,d=Exgcd(a1,a2,x,y);
if((b2-b1)%d) return 0;
Exgcd(a1/d,a2/d,x,y),x*=(b2-b1)/d,x=(x%(a2/d)+a2/d)%(a2/d);
b1=a1*x+b1,a1=a1/d*a2,b1=(b1%a1+a1)%a1;
return 1;
}
int main(){
n=in();
for(LL i=1,u,v;i<=n;i++) u=in(),v=in(),m[i]=mpr(u,v);
a1=m[1].first,b1=m[1].second;
for(int i=2;i<=n;i++){
a2=m[i].first,b2=m[i].second;
if(!Solve()) return puts("-1"),0;
}return printf("%lld\n",b1),0;
}
hihoCoder 1303 数论六·模线性方程组的更多相关文章
- hiho一下 第九十七周 数论六·模线性方程组
题目1 : 数论六·模线性方程组 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Ho:今天我听到一个挺有意思的故事! 小Hi:什么故事啊? 小Ho:说秦末,刘邦的将军 ...
- 【hihocoder 1303】模线性方程组
[题目链接]:http://hihocoder.com/problemset/problem/1303 [题意] [题解] /* x % m[1] = r[1] x % m[2] = r[2] x = ...
- Strange Way to Express Integers (一般模线性方程组)
Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 8476 Accepted: 2554 Description Elin ...
- POJ 1061 青蛙的约会(拓展欧几里得算法求解模线性方程组详解)
题目链接: BZOJ: https://www.lydsy.com/JudgeOnline/problem.php?id=1477 POJ: https://cn.vjudge.net/problem ...
- cf 450b 矩阵快速幂(数论取模 一大坑点啊)
Jzzhu has invented a kind of sequences, they meet the following property: You are given x and y, ple ...
- 数论 : 模运算法则(poj 1152)
题目:An Easy Problem! 题意:求给出数的最小进制. 思路:暴力WA: discuss中的idea: 给出数ABCD,若存在n 满足 (A* n^3 +B*n^2+C*n^1+D*n^0 ...
- hdu 5755(高斯消元——模线性方程组模板)
PS. 看了大神的题解,发现确实可以用m个未知数的高斯消元做.因为确定了第一行的情况,之后所有行的情况都可以根据第一行推. 这样复杂度直接变成O(m*m*m) 知道了是高斯消元后,其实只要稍加处理,就 ...
- HDU.3571.N-dimensional Sphere(高斯消元 模线性方程组)
题目链接 高斯消元详解 /* $Description$ 在n维空间中给定n+1个点,求一个点使得这个点到所有点的距离都为R(R不给出).点的任一坐标|xi|<=1e17. $Solution$ ...
- POJ.2065.SETI(高斯消元 模线性方程组)
题目链接 \(Description\) 求\(A_0,A_1,A_2,\cdots,A_{n-1}\),满足 \[A_0*1^0+A_1*1^1+\ldots+A_{n-1}*1^{n-1}\equ ...
随机推荐
- Git版本控制软件结合GitHub从入门到精通常用命令学习手册(转)
简要参考:http://www.tuicool.com/articles/mEvaq2 http://gitref.org/zh/index.html GIT 学习手册简介 本站为 Git 学习参考手 ...
- Linux学习笔记(一)2015.4.13
研究生由单片机转Linux学习 首先安装VMware虚拟机,用的是VMware 10.0 在VMware 10.0上安装视频上推荐的Red Hat Linux 5 安装后正式进入Linux学习 笔记1 ...
- Java I/O流体系
- JavaScript 日历
效果图: <html> <head> <script language="javascript"> /*@ 解题思路: .计算本月有多少天(先要 ...
- clipboard复制剪贴板功能,以及用requirejs时报错---Uncaught ReferenceError: Clipboard is not defined
zeroclipboard是走的flash插件,手机浏览器是不支持的,所以不得不舍弃之,用clipboard,clipboard不需要flash就可以完成复制剪切等功能,而且可以兼容pc,移动端,下面 ...
- lightbox图片展示效果
1.lightbox 头部导入: <script type="text/javascript" src="../Public/Js/prototype.js&quo ...
- 创建menu文件
一.问题: android studio项目中没有看到menu文件夹: 在android studio项目中想要添加menu布局文件,一开始我的做法是:直接在res文件夹右键选择xml文件来添加,如下 ...
- 数据库操作事务IsolationLevel 枚举
成员名称 说明 Chaos 无法覆盖隔离级别更高的事务中的挂起的更改. ReadCommitted 在正在读取数据时保持共享锁,以避免脏读,但是在事务结束之前可以更改数据,从而导致不可重复 ...
- System.out.println与System.err.println的区别(输出顺序!!!)
System.out.println与System.err.println的区别(输出顺序!!!) 分类:java (208) (0) System.out.println与System.err.p ...
- Orchard源码分析(7):ASP.NET MVC相关
概述 Orchard归根结底是一个ASP.NET MVC(以后都简称为MVC)应用,但在前面的分析中,与MVC相关内容的涉及得很少.MVC提供了非常多的扩展点,本文主要关注Orchard所做的扩展.主 ...