HDU 1264 Counting Squares(线段树求面积的并)
Counting Squares
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 1885 Accepted Submission(s): 946
5 8 7 10
specifies the rectangle who's corners are(5,8),(7,8),(7,10),(5,10).
If drawn on graph paper, that rectangle would cover four squares. Your job is to count the number of unit(i.e.,1*1) squares that are covered by any one of the rectangles given as input. Any square covered by more than one rectangle should only be counted once.
题目链接:HDU 1264
连离散化都不用的水题,有一个坑点就是题目给的两个对角线坐标不一定是左下、右上这样一个顺序,或者也可能是副对角线上的点,需要判断一下
代码:
#include <stdio.h>
#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
typedef pair<int,int> pii;
typedef long long LL;
const double PI=acos(-1.0);
const int N=1e3+7;
struct seg
{
int l,mid,r;
int cnt,len;
};
struct Line
{
int l,r,h,flag;
bool operator<(const Line &t)const
{
return h<t.h;
}
};
seg T[N<<3];
Line xline[N<<1]; inline void pushup(int k)
{
if(T[k].cnt>0)
T[k].len=T[k].r-T[k].l+1;
else
{
if(T[k].l==T[k].r)
T[k].len=0;
else
T[k].len=T[LC(k)].len+T[RC(k)].len;
}
}
void build(int k,int l,int r)
{
T[k].l=l;
T[k].r=r;
T[k].mid=MID(l,r);
T[k].len=T[k].cnt=0;
if(l==r)
return ;
build(LC(k),l,T[k].mid);
build(RC(k),T[k].mid+1,r);
pushup(k);
}
void update(int k,int l,int r,int flag)
{
if(l<=T[k].l&&T[k].r<=r)
{
T[k].cnt+=flag;
pushup(k);
}
else
{
if(r<=T[k].mid)
update(LC(k),l,r,flag);
else if(l>T[k].mid)
update(RC(k),l,r,flag);
else
update(LC(k),l,T[k].mid,flag),update(RC(k),T[k].mid+1,r,flag);
pushup(k);
}
}
int main(void)
{
int n,i;
int xa,ya,xb,yb;
int cnt=0;
while (scanf("%d%d%d%d",&xa,&ya,&xb,&yb))
{
if(xa==-1&&xb==-1&&ya==-1&&yb==-1)
{
int ans=0;
build(1,0,N);
sort(xline,xline+cnt);
for (i=0; i<cnt-1; ++i)
{
update(1,xline[i].l,xline[i].r-1,xline[i].flag);
ans=ans+(xline[i+1].h-xline[i].h)*T[1].len;
}
printf("%d\n",ans);
cnt=0;
}
else if(xa==-2&&xb==-2&&ya==-2&&yb==-2)
{
int ans=0;
build(1,0,N);
sort(xline,xline+cnt);
for (i=0; i<cnt-1; ++i)
{
update(1,xline[i].l,xline[i].r-1,xline[i].flag);
int dh=(xline[i+1].h-xline[i].h);
ans=ans+dh*T[1].len;
}
printf("%d\n",ans);
cnt=0;
break;
}
else
{
if(xa>xb)
swap(xa,xb);
if(ya>yb)
swap(ya,yb);
xline[cnt++]=(Line){xa,xb,ya,1};
xline[cnt++]=(Line){xa,xb,yb,-1};
} }
return 0;
}
HDU 1264 Counting Squares(线段树求面积的并)的更多相关文章
- HDU - 1542 Atlantis(线段树求面积并)
https://cn.vjudge.net/problem/HDU-1542 题意 求矩形的面积并 分析 点为浮点数,需要离散化处理. 给定一个矩形的左下角坐标和右上角坐标分别为:(x1,y1).(x ...
- HDU 1264 Counting Squares (线段树-扫描线-矩形面积并)
版权声明:欢迎关注我的博客.本文为博主[炒饭君]原创文章,未经博主同意不得转载 https://blog.csdn.net/a1061747415/article/details/25471349 P ...
- HDU - 1255 覆盖的面积 (线段树求面积交)
https://cn.vjudge.net/problem/HDU-1255 题意 给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积. 分析 求面积并的题:https://www.cnbl ...
- hdu-1255(线段树求面积并)模板
题目链接:传送门 思路: (1)建立线段的信息,每个线段存储l到r的线段的x位置和y的起始点与终点. 建立线段树的节点信息,每个节点代表一个区间的信息,x表示区间的横坐标的位置,l,r表示纵坐标的范围 ...
- hdu 3265 Posters(线段树+扫描线+面积并)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3265 题意:给你一张挖了洞的墙纸贴在墙上,问你总面积有多少. 挖了洞后其实就是多了几个矩形墙纸,一张墙 ...
- HDU 1264 Counting Squares(模拟)
题目链接 Problem Description Your input is a series of rectangles, one per line. Each rectangle is speci ...
- poj-1151-Atlantis-线段树求面积并
非常裸的线段树求面积并. 坐标须要离散化一下. #include<stdio.h> #include<iostream> #include<stdlib.h> #i ...
- hdu-3642--Get The Treasury-线段树求面积并
求空间中叠加3次及3次以上的体积. 由于|z|<=500.所以直接把z轴剥离出来1000层. 然后对于每一层进行线段树求面积并. #include<stdio.h> #include ...
- HDU - 1255 覆盖的面积(线段树求矩形面积交 扫描线+离散化)
链接:线段树求矩形面积并 扫描线+离散化 1.给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积. 2.看完线段树求矩形面积并 的方法后,再看这题,求的是矩形面积交,类同. 求面积时,用被覆 ...
随机推荐
- HTML DOM Document
Document 对象 每个载入浏览器的 HTML 文档都会成为 Document 对象. Document 对象使我们可以从脚本中对 HTML 页面中的所有元素进行访问. 提示:Document 对 ...
- Find Minimum in Rotated Sorted Array
package leetcode; /* * * 注意问题: * 1. 原序列升序.降序问题,两种情况都要考虑 * 2. 边界问题,如果只有两个元素时要单独考虑,在num[mid]==num[left ...
- DependencyProperties or INotifyPropertyChanged ?
When you want to make an object binding-aware you have two choices : implements INotifyPropertyChang ...
- iOS学习32之UIKit框架-可视化编程-XIB
1. Interface Builder 可视化编程 1> 概述 GUI : 图形用户界面(Graphical User Interface, 简称GUI, 又称图形化界面) 是指采用图形方式显 ...
- 使用linux命令行配置无线网链接
1. 需安装wpa_supplicant https://wiki.archlinux.org/index.php/WPA_Supplicant_%28%E7%AE%80%E4%BD%93%E4%B8 ...
- Node.js的线程和进程
http://www.admin10000.com/document/4196.html 前言 很多Node.js初学者都会有这样的疑惑,Node.js到底是单线程的还是多线程的?通过本章的学习,能够 ...
- Mongoose简单学习笔记
1.1 名词解释 Schema : 一种以文件形式存储的数据库模型骨架,不具备数据库的操作能力 Model : 由Schema发布生成的模型,具有抽象属性和行为的数据库操作对 Entity : 由Mo ...
- Google Chrome Uncaught TypeError: object is not a function
<html> <script type="text/javascript"> function testForm(){ alert("hello ...
- Android 解压缩功能
主要用到zip: import java.util.Enumeration; import java.util.zip.CRC32; import java.util.zip.CheckedOutpu ...
- ACM: Racing Gems - 最长递增序列
Racing Gems You are playing a racing game. Your character starts at the x axis (y = 0) and procee ...