The Moving Points

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 878    Accepted Submission(s): 353

Problem Description
There are N points in total. Every point moves in certain direction and certain speed. We want to know at what time that the largest distance between any two points would be minimum. And also, we require you to calculate that minimum distance. We guarantee that no two points will move in exactly same speed and direction.
 
Input
The rst line has a number T (T <= 10) , indicating the number of test cases.
For each test case, first line has a single number N (N <= 300), which is the number of points.
For next N lines, each come with four integers Xi, Yi, VXi and VYi (-106 <= Xi, Yi <= 106, -102 <= VXi , VYi <= 102), (Xi, Yi) is the position of the ith point, and (VXi , VYi) is its speed with direction. That is to say, after 1 second, this point will move to (Xi + VXi , Yi + VYi).
 
Output
For test case X, output "Case #X: " first, then output two numbers, rounded to 0.01, as the answer of time and distance.
 
Sample Input
2
2
0 0 1 0
2 0 -1 0
2
0 0 1 0
2 1 -1 0
 
Sample Output
Case #1: 1.00 0.00
Case #2: 1.00 1.00
 
Source
 
Recommend
zhuyuanchen520
 
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath> using namespace std; const double eps=1e-;
const double INF=0x3f3f3f3f; struct point
{
double x,y;
double vx,vy;
point() {}
point(double a,double b,double c,double d):x(a),y(b),vx(c),vy(d){}
}P[]; double getP2Pdist(point a,point b,double t)
{
double x1=a.x+t*a.vx,y1=a.y+t*a.vy;
double x2=b.x+t*b.vx,y2=b.y+t*b.vy;
return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
} double LMdist(int n,double t)
{
double ans=-INF;
for(int i=;i<n;i++)
{
for(int j=i+;j<n;j++)
{
ans=max(ans,getP2Pdist(P[i],P[j],t));
}
}
return ans;
} int main()
{
int t,n,cas=;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(int i=;i<n;i++)
{
double a,b,c,d;
scanf("%lf%lf%lf%lf",&a,&b,&c,&d);
P[i]=point(a,b,c,d);
}
double low=,high=,midlow,midhigh;
int cnt=;
while(cnt<=)
{
cnt++;
midlow=(low*+high)/.,midhigh=(low+high*)/.;
double distlow=LMdist(n,midlow);
double disthigh=LMdist(n,midhigh);
if(distlow>disthigh) low=midlow;
else high=midhigh;
}
double anstime=low;
double ansdist=LMdist(n,low);
printf("Case #%d: %.2lf %.2lf\n",cas++,anstime,ansdist);
}
return ;
}
* This source code was highlighted by YcdoiT. ( style: Codeblocks )

HDOJ 4717 The Moving Points的更多相关文章

  1. HDU 4717 The Moving Points (三分)

    The Moving Points Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  2. HDU 4717 The Moving Points(三分)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4717 题意:给出n个点的坐标和运动速度(包括方向).求一个时刻t使得该时刻时任意两点距离最大值最小. ...

  3. hdu 4717 The Moving Points(第一个三分题)

    http://acm.hdu.edu.cn/showproblem.php?pid=4717 [题意]: 给N个点,给出N个点的方向和移动速度,求每个时刻N个点中任意两点的最大值中的最小值,以及取最小 ...

  4. hdu 4717 The Moving Points(三分+计算几何)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4717 说明下为啥满足三分: 设y=f(x) (x>0)表示任意两个点的距离随时间x的增长,距离y ...

  5. HDU 4717 The Moving Points(三分法)(2013 ACM/ICPC Asia Regional Online ―― Warmup2)

    Description There are N points in total. Every point moves in certain direction and certain speed. W ...

  6. hdu 4717 The Moving Points(三分)

    http://acm.hdu.edu.cn/showproblem.php?pid=4717 大致题意:给出每一个点的坐标以及每一个点移动的速度和方向. 问在那一时刻点集中最远的距离在全部时刻的最远距 ...

  7. HDU 4717 The Moving Points (三分法)

    题意:给n个点的坐标的移动方向及速度,问在之后的时间的所有点的最大距离的最小值是多少. 思路:三分.两点距离是下凹函数,它们的max也是下凹函数.可以三分. #include<iostream& ...

  8. hdu 4717: The Moving Points 【三分】

    题目链接 第一次写三分 三分的基本模板 int SanFen(int l,int r) //找凸点 { ) { //mid为中点,midmid为四等分点 ; ; if( f(mid) > f(m ...

  9. HDU 4717The Moving Points warmup2 1002题(三分)

    The Moving Points Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

随机推荐

  1. pack、unpack自制二进制“数据库”

    引言 pack.unpack函数,如果没有接触过socket,这个可能会比较陌生,这两个函数在socket交互的作用是组包,将数据装进一个二进制字符串,和对二进制字符串中的数据进行解包,这个里面有好多 ...

  2. 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Final

    Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...

  3. Mouse.OverrideCursor

    介绍: 获取和设置整个应用程序的光标,WPF父元素将覆盖所有子元素的光标. WPF设置控件的光标: WPF 中每个光标通过一个System.Windows.Input.Cursor表示, 获取Curs ...

  4. iOS - CALayer相关(CATransform3D)

    一.图层的几何 图层的几何简单通俗,图层的所有几何属性(包括矩阵变换),都可以有隐式和显式动画. 图层几何的属性: 1.position是CGPoint值,她指定图层相对于她图层的位置,该值基于父图层 ...

  5. 数据库中Count是什么意思和SUM有什么区别?

    今天早上在做数据库的练习, 我是这样写的: 得出是: 后来才知道是: 结果是: 后来我意识到区别,于是查资料得到: 数据库中的count,是用来统计你查询出来的记录数,比如学生表中有十条记录:sele ...

  6. 如何在maven中添加jar包

    Maven 中央仓库地址: 1. http://www.sonatype.org/nexus/ 2. http://mvnrepository.com/ (本人推荐仓库) 3. http://repo ...

  7. uC/OS-II应用程序代码

    /*************************************************************************************************** ...

  8. UrlEncode编码/UrlDecode解码 - 站长工具

    http://tool.chinaz.com/tools/urlencode.aspx

  9. Tomcat 的三种(bio,nio.apr) 高级 Connector 运行模式及apr配置

    转: http://www.oschina.net/question/54100_16195omcat的运行模式有3种.修改他们的运行模式.3种模式的运行是否成功,可以看他的启动控制台,或者启动日志. ...

  10. nginx访问日志获取访问前10的url

    在ELK里面获取top10的url在日志量非常大的情况下是非常消耗内存的,所以写了一个脚本用来快速获取. 配置文件 log.conf [log] log_file = /data/logs/nginx ...