题意:求所有自己的最小公倍数的和。 该集合是  2^ai  * 3^bi

思路:线段树。 线段树中存的是  【3^b * f(b)】   f(b)表示 因子3 的最小公倍数3的部分  为 3^b的个数  那么从小到大枚举a  对于当前的  ab  ,  如果之前的b小于当前的b  那么最小公倍数就为  (2^a) *  (3^b)   个数 就为 2^x     x表示a  b 都小于当前a b的个数 。  大于的部分 就直接是  2^a   * 线段树上【b,max】的和。   求好当前更新进去,对于 【b,max】 区间 直接乘2 (表示当前这个b可选可不选) 。       b位置加上(2^x)  * (3^b) 的值即可(当前b被选为最大的b时的个数)。

#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include <iostream>
#define lson i<<1
#define rson i<<1|1
#define LL long long
#define N 100050
#define MOD 1000000007
using namespace std;
int cnt[N*],val[N*],sum[N*],mul[N*];
int mypow(int a,int b)
{
int res=;
while(b)
{
if(b&)
res=(LL)res*a%MOD;
a=(LL)a*a%MOD;
b>>=;
}
return res;
}
int qa[N],qb[N];
void build(int l,int r,int i)
{
cnt[i]=sum[i]=;
mul[i]=;
if(l==r)
{
val[i]=mypow(,qb[l]);
return ;
}
int mid=(l+r)>>;
build(l,mid,lson);
build(mid+,r,rson);
}
void pushdown(int i)
{
if(mul[i]!=)
{
mul[lson]=(LL)mul[lson]*mul[i]%MOD;
mul[rson]=(LL)mul[rson]*mul[i]%MOD;
sum[lson]=(LL)sum[lson]*mul[i]%MOD;
sum[rson]=(LL)sum[rson]*mul[i]%MOD;
mul[i]=;
}
}
void pushup(int i)
{
cnt[i]=cnt[lson]+cnt[rson];
sum[i]=(sum[lson]+sum[rson])%MOD;
}
void update(int l,int r,int pl,int pr,int type,int va,int i)
{
if(l>=pl&&r<=pr)
{
if(type==)
{
mul[i]=(LL)mul[i]*va%MOD;
sum[i]=(LL)sum[i]*va%MOD;
}else
{
cnt[i]++;
sum[i]+=(LL)val[i]*va%MOD;
if(sum[i]>=MOD)sum[i]-=MOD;
}
return ;
}
pushdown(i);
int mid=(l+r)>>;
if(mid>=pl)update(l,mid,pl,pr,type,va,lson);
if(pr>mid)update(mid+,r,pl,pr,type,va,rson);
pushup(i);
}
int query(int l,int r,int pl,int pr,int type,int i)
{
if(l>=pl&&r<=pr)
{
if(type==)return sum[i];
else return cnt[i];
}
pushdown(i);
int mid=(l+r)>>;
int tmp=;
if(pl<=mid)tmp+=query(l,mid,pl,pr,type,lson);
if(pr>mid)tmp+=query(mid+,r,pl,pr,type,rson);
if(tmp>=MOD)tmp-=MOD;
return tmp;
}
struct node
{
int a,b;
}s[N];
bool cmp(node a,node b)
{
return a.a<b.a;
}
int main() {
int n;
while(scanf("%d",&n)!=EOF)
{
int taila,tailb;
taila=tailb=;
for(int i=;i<n;++i)
{
scanf("%d%d",&s[i].a,&s[i].b);
qa[taila++]=s[i].a;
qb[tailb++]=s[i].b;
}
sort(s,s+n,cmp);
sort(qa,qa+taila);
sort(qb,qb+tailb);
taila=unique(qa,qa+taila)-qa;
tailb=unique(qb,qb+tailb)-qb;
int maxn=tailb-;
build(,maxn,);
int ans=;
for(int i=;i<n;++i)
{
int x=lower_bound(qb,qb+tailb,s[i].b)-qb;
int tmp=(LL)mypow(,s[i].a)*mypow(,s[i].b)%MOD;
int cc=;
if(x>)
{
cc=query(,maxn,,x-,,);
tmp=(LL)tmp*mypow(,cc)%MOD;
}
int tmp2=(LL)mypow(,s[i].a)*query(,maxn,x,maxn,,)%MOD;
tmp+=tmp2;
if(tmp>=MOD)tmp-=MOD;
ans+=tmp;
if(ans>=MOD)ans-=MOD;
// printf("::%d %d\n",x,maxn);
update(,maxn,x,maxn,,,);
update(,maxn,x,x,,mypow(,cc),);
}
printf("%d\n",(ans%MOD+MOD)%MOD);
} return ;
}

HDU 4913 Least common multiple(2014 Multi-University Training Contest 5)的更多相关文章

  1. HDU 4913 Least common multiple

    题目:Least common multiple 链接:http://acm.hdu.edu.cn/showproblem.php?pid=4913 题意:有一个集合s,包含x1,x2,...,xn, ...

  2. ACM学习历程—HDU 3092 Least common multiple(数论 && 动态规划 && 大数)

    Description Partychen like to do mathematical problems. One day, when he was doing on a least common ...

  3. hdu 5003 模拟水题 (2014鞍山网赛G题)

    你的一系列得分 先降序排列 再按0.95^(i-1)*ai 这个公式计算你的每一个得分 最后求和 Sample Input12530 478Sample Output984.1000000000 # ...

  4. 背包系列练习及总结(hud 2602 && hdu 2844 Coins && hdu 2159 && poj 1170 Shopping Offers && hdu 3092 Least common multiple && poj 1015 Jury Compromise)

    作为一个oier,以及大学acm党背包是必不可少的一部分.好久没做背包类动规了.久违地练习下-.- dd__engi的背包九讲:http://love-oriented.com/pack/ 鸣谢htt ...

  5. 千寻浏览器 1.0 Beta 1(524)(2014年5月27日)

    千寻浏览器--又一款新生浏览器今天进入各位浏览迷的视野.千寻浏览器基于IE内核,据传是由百度浏览器的上海团队操刀,在功能定位上,与目前的QQ浏览器有些相似. 千寻来自官方的解释:寻,追寻,探索,又是古 ...

  6. HDU 3416 Marriage Match IV (最短路径,网络流,最大流)

    HDU 3416 Marriage Match IV (最短路径,网络流,最大流) Description Do not sincere non-interference. Like that sho ...

  7. ( 2018 Multi-University Training Contest 2)

    2018 Multi-University Training Contest 2) HDU 6311 Cover HDU 6312 Game HDU 6313 Hack It HDU 6314 Mat ...

  8. hdu 2028 Lowest Common Multiple Plus(最小公倍数)

    Lowest Common Multiple Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  9. HDU——1019Least Common Multiple(多个数的最小公倍数)

    Least Common Multiple Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Ot ...

随机推荐

  1. sql join 优化

    项目查询列表,需要新关联一张表,于是就让组下小伙更改了下sql语句,当再次进入列表查询时查询时间一下子就翻倍.那小伙找了半天没找原因. 于是我就打开代码查看,关联的一张表数据非常多,用的left jo ...

  2. [转]ASP.NET MVC Json()处理大数据异常解决方法 json maxjsonlength

    本文转自:http://blog.csdn.net/blacksource/article/details/18797055 先对项目做个简单介绍: 整个项目采用微软的ASP.NET MVC3进行开发 ...

  3. 机器学习实战-K-nearest neighbors 算法的优缺点

    K临近算法是基于实例的学习,使用算法的时候我们必须要有接近分类结果的实例训练样本数据. 优点:精度高,对异常值不敏感 缺点: 时间复杂度和空间复杂度比较大.(如果训练样本数据集比较大,需要大量的空间来 ...

  4. javascript,jQuery,trim()

    JavaScript trim() Syntax string.trim() The trim() method removes whitespace from both sides of a str ...

  5. 【转】eclipse安装SVN插件的两种方法

    转载地址:http://welcome66.iteye.com/blog/1845176 eclipse里安装SVN插件,一般来说,有两种方式: 直接下载SVN插件,将其解压到eclipse的对应目录 ...

  6. IntelliJ IDEA使用(2)——IDEA配置Tomcat

    如果网上流传的方法(即方法2)不能配置成功,点击加号什么都没有的话,请看方法一配置方法. 解决问题:intlellij IDEA配置tomcat点击加号没东西. 方法一:手动添加tomcat插件然后再 ...

  7. 2016年12月20日 星期二 --出埃及记 Exodus 21:15

    2016年12月20日 星期二 --出埃及记 Exodus 21:15 "Anyone who attacks his father or his mother must be put to ...

  8. [问题2014S13] 解答

    [问题2014S13]  解答 (1) 先证必要性:若 \(A=LU\) 是 非异阵 \(A\) 的 \(LU\) 分解,则 \(L\) 是主对角元全部等于 1 的下三角阵,\(U\) 是主对角元全部 ...

  9. 遗传算法在JobShop中的应用研究(part1: 绪论)

    1. 什么是JobShop问题 Job,中文翻译成工件.一个工件又由若干道工序加工完成. resource, 资源.在本文的车间调度中资源指的是机器,每道工序要在某个特定机器上加工. Constrai ...

  10. WPF-非矩形窗口的创建

    第一.窗口的AllowsTransparency设置为True 第二.窗口的Background设置为Transparent 第三.窗口的WindowStyle设置为None 第四.窗口内的Grid用 ...