UvaLive6661 Equal Sum Sets dfs或dp
题意:让你用1~n中k个不同的数组成s,求有多少种组法。
题解:
DFS或者DP或打表。
1.DFS 由于数据范围很小,直接dfs每种组法统计个数即可。
//#pragma comment(linker, "/STACK:102400000,102400000")
#include<cstdio>
#include<cmath>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<map>
#include<set>
#include<stack>
#include<queue>
using namespace std;
#define ll __int64
#define usint unsigned int
#define mz(array) memset(array, 0, sizeof(array))
#define minf(array) memset(array, 0x3f, sizeof(array))
#define REP(i,n) for(int i=0;i<(n);i++)
#define FOR(i,x,n) for(int i=(x);i<=(n);i++)
#define RD(x) scanf("%d",&x)
#define RD2(x,y) scanf("%d%d",&x,&y)
#define RD3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define WN(x) printf("%d\n",x);
#define RE freopen("D.in","r",stdin)
#define WE freopen("1biao.out","w",stdout) const int maxn=;
bool h[maxn];
int ans;
int n,k,s;
void dfs(int x,int sum,int start) {
if(sum>s) return;
if(x==k) {
if(sum==s) ans++;
return;
}
for(int i=start; i<=n; i++) {
if(h[i]==false) {
h[i]=true;
dfs(x+,sum+i,i+);
h[i]=false;
}
}
return;
} int farm() {
memset(h,,sizeof(h));
ans=;
dfs(,,);
return ans;
} int main() {
while(scanf("%d%d%d",&n,&k,&s)!=EOF) {
if(n== && k== && s==) break;
//cout<<n<<','<<k<<','<<s<<endl;
printf("%d\n",farm());
}
return ;
}
2.DP
dp[i][k][j]代表用1~i中的数中的k个组成j的种类数。
dp[i][k][j]=dp[i-1][k][j] + dp[i-1][k-1][j-i],加号左边是继承1~i-1的种类数(因为1~i的种类数包括1~i-1的种类数),加号右边是给那些由k-1个数组成的种类加上i得到j的种类。
//#pragma comment(linker, "/STACK:102400000,102400000")
#include<cstdio>
#include<cmath>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<map>
#include<set>
#include<stack>
#include<queue>
using namespace std;
#define ll __int64
#define usint unsigned int
#define mz(array) memset(array, 0, sizeof(array))
#define minf(array) memset(array, 0x3f, sizeof(array))
#define REP(i,n) for(int i=0;i<(n);i++)
#define FOR(i,x,n) for(int i=(x);i<=(n);i++)
#define RD(x) scanf("%d",&x)
#define RD2(x,y) scanf("%d%d",&x,&y)
#define RD3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define WN(x) printf("%d\n",x);
#define RE freopen("D.in","r",stdin)
#define WE freopen("1biao.out","w",stdout)
int n,k,s;
int dp[][][]; int main() {
int i,j,k;
int maxj;
mz(dp);
dp[][][]=;
for(i=; i<=; i++) {
for(k=; k<=; k++) {
dp[i][k][]=dp[i-][k][];
maxj=(i+i-k+)*k/;///此i和k能打到的最大的j
for(j=; j<=maxj; j++) {///dp[i][k][j],用数1~i中的k个组成j的种类数
dp[i][k][j]=dp[i-][k][j];///继承
if(j>=i) dp[i][k][j] += dp[i-][k-][j-i];///没i的状态加上i
}
}
}
while(scanf("%d%d%d",&n,&k,&s)!=EOF) {
if(n== && k== && s==) break;
//cout<<n<<','<<k<<','<<s<<endl;
printf("%d\n",dp[n][k][s]);
}
return ;
}
3.DP 空间降一维
dp[k][j]表示k个数组成j的种类数。
有一维要逆序for,防止同一i下重复计算。
//#pragma comment(linker, "/STACK:102400000,102400000")
#include<cstdio>
#include<cmath>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<map>
#include<set>
#include<stack>
#include<queue>
using namespace std;
#define ll __int64
#define usint unsigned int
#define mz(array) memset(array, 0, sizeof(array))
#define minf(array) memset(array, 0x3f, sizeof(array))
#define REP(i,n) for(int i=0;i<(n);i++)
#define FOR(i,x,n) for(int i=(x);i<=(n);i++)
#define RD(x) scanf("%d",&x)
#define RD2(x,y) scanf("%d%d",&x,&y)
#define RD3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define WN(x) printf("%d\n",x);
#define RE freopen("D.in","r",stdin)
#define WE freopen("1biao.out","w",stdout)
int n,K,s;
int dp[][]; int main() {
int i,j,k;
int maxj;
while(scanf("%d%d%d",&n,&K,&s)!=EOF) {
if(n== && K== && s==) break;
mz(dp);
dp[][]=;
for(i=; i<=n; i++) {///用1到i中的数
for(k=K; k>; k--) {
for(j=i; j<=s; j++) {///dp[k][j],k个数组成数j的种类数
dp[k][j] += dp[k-][j-i];///没i的状态加上i
}
}
}
printf("%d\n",dp[K][s]);
}
return ;
}
4.打表
深搜怕超时可以怒打一表,只要不限制代码长度就随便过。
(代码太长了贴不上来)
UvaLive6661 Equal Sum Sets dfs或dp的更多相关文章
- [UVALive 6661 Equal Sum Sets] (dfs 或 dp)
题意: 求从不超过 N 的正整数其中选取 K 个不同的数字,组成和为 S 的方法数. 1 <= N <= 20 1 <= K<= 10 1 <= S <= 15 ...
- UvaLive 6661 Equal Sum Sets (DFS)
Let us consider sets of positive integers less than or equal to n. Note that all elements of a set a ...
- D.6661 - Equal Sum Sets
Equal Sum Sets Let us consider sets of positive integers less than or equal to n. Note that all elem ...
- Equal Sum Sets
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=49406 题意: 输入n,k,s,求在不小于n的数中找出k个不同的数 ...
- UVALive 6661 Equal Sum Sets
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...
- HDU-3280 Equal Sum Partitions
http://acm.hdu.edu.cn/showproblem.php?pid=3280 用了简单的枚举. Equal Sum Partitions Time Limit: 2000/1000 M ...
- POJ 1849 - Two - [DFS][树形DP]
Time Limit: 1000MS Memory Limit: 30000K Description The city consists of intersections and streets t ...
- 698. Partition to K Equal Sum Subsets
Given an array of integers nums and a positive integer k, find whether it's possible to divide this ...
- HDU 3280 Equal Sum Partitions(二分查找)
Equal Sum Partitions Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
随机推荐
- POJ2796 Feel Good 单调栈
题意:给定一个序列,需要找出某个子序列S使得Min(a[i])*Σa[i] (i属于S序列)最大 正解:单调栈 这题的暴力还是很好想的,只需3分钟的事就可以码完,以每个点拓展即可,但这样的复杂度是O( ...
- Python基础4:数据类型:数字 字符串 日期
[ Python 数据类型 ] 我们知道,几乎任何编程语言都具有数据类型:常见的数据类型有:字符串.整型.浮点型以及布尔类型等. Python也不例外,也有自己的数据类型,主要有以下几种: 1.数字: ...
- Java中使用JDBC
JDBC简介 JDBC(Java Data Base Connectivity,java数据库连接)是一种用于执行SQL语句的Java API,可以为多种关系数据库提供统一访问,它由一组用Java语言 ...
- C#做窗体皮肤
网上有很好的皮肤控件 SkinEnigne可供使用: 具体步骤: 添加控件SkinEngine. 1.右键“工具箱”.“添加选项卡”,取名“皮肤”. 2.右键“皮肤”,“选择项”弹出对话框. 3.点击 ...
- Node 一个简单的HttpServer+Mysql的后台
接收来自客户端的Post参数,通过Mysql查询,并以Json返回需要的信息,直接代码 createServer(); function createServer(){ //使用express创建HT ...
- Scala implicit
Scala implicit implicit基本含义 在Scala中有一个关键字是implicit, 之前一直不知道这个货是干什么的,今天整理了一下. 我们先来看一个例子: def display( ...
- CF 444C DZY Loves Physics(图论结论题)
题目链接: 传送门 DZY Loves Chemistry time limit per test1 second memory limit per test256 megabytes Des ...
- HDU 1846 Brave Game(巴什博弈)
题目链接: 传送门 Brave Game Time Limit: 1000MS Memory Limit: 65536K 题目描述 各位勇敢者要玩的第一个游戏是什么呢?很简单,它是这样定义的: ...
- 系统配置 之:远程桌面连接(win7系统)
本文包括两部分: 1.配置远程桌面连接 2.解决[远程桌面连接不上] 一.远程桌面连接设置 [远程桌面连接配置] Win7系统下的远程桌面连接设置,如果是其他系统或 Win8 及其以上系统,也可作为参 ...
- eclipse配置gradle
1.Grandle官网下载Gradle 2.解压文件,配置到环境变量 3.测试安装成功,$ gradle -v 4.打开eclipse,Help-->Install new software,输 ...