[家里蹲大学数学杂志]第053期Legendre变换
$\bf 题目$. 设 $\calX$ 是一个 $B$ 空间, $f:\calX\to \overline{\bbR}\sex{\equiv \bbR\cap\sed{\infty}}$ 是连续的凸泛函并且 $f(x)\not\equiv \infty$. 若定义 $f^*:\calX^*\to \overline{\bbR}$ 为 $$\bex f^*(x^*)=\sup_{x\in\calX}\sed{\sef{x^*,x}-f(x)}\quad\sex{\forall\ x^*\in \calX^*}. \eex$$ 求证: $f^*(x^*)\not\equiv \infty$.
证明: 设 $x_0\in \calX$ 适合 $f(x_0)<\infty$. 则由 $f$ 凸及在 $x_0$ 处连续知 $\p f(x_0)\neq \emptyset$. 令 $x_0^*\in \p f(x_0)$, 则 $$\bex f(x)\geq f(x_0)+\sef{x_0^*,x-x_0}\quad\sex{\forall\ x\in\calX}, \eex$$ 而 $$\bex \sef{x_0^*,x}-f(x) \leq \sef{x_0^*,x_0}-f(x_0)<\infty, \eex$$ 即有 $$\bex f^*(x_0^*)\leq\sef{x_0^*,x_0}-f(x_0)<\infty. \eex$$
[家里蹲大学数学杂志]第053期Legendre变换的更多相关文章
- [家里蹲大学数学杂志]第033期稳态可压Navier-Stokes方程弱解的存在性
1. 方程 考虑 $\bbR^3$ 中有界区域 $\Omega$ 上如下的稳态流动: $$\bee\label{eq} \left\{\ba{ll} \Div(\varrho\bbu)=0,\\ \ ...
- [家里蹲大学数学杂志]第047期18 世纪法国数学界的3L
1 Lagrange---78岁 约瑟夫·拉格朗日, 全名约瑟夫·路易斯·拉格朗日 (Joseph-Louis Lagrange 1735~1813) 法国数学家.物理学家. 1736年1月25日生于 ...
- [家里蹲大学数学杂志]第237期Euler公式的美
1 Euler 公式 $e^{i\pi}+1=0$ (1) 它把 a. $e:$ 自然对数的底 $\approx 2. 718281828459$ (数分) b. $i$: 虚数单位 $=\sqr ...
- [家里蹲大学数学杂志]第013期2010年西安偏微分方程暑期班试题---NSE,非线性椭圆,平均曲率流,非线性守恒律,拟微分算子
Navier-Stokes equations 1 Let $\omega$ be a domain in $\bbR^3$, complement of a compact set $\mathca ...
- [家里蹲大学数学杂志]第041期中山大学数计学院 2008 级数学与应用数学专业《泛函分析》期末考试试题 A
1 ( 10 分 ) 设 $\mathcal{X}$ 是 Banach 空间, $f$ 是 $\mathcal{X}$ 上的线性泛函. 求证: $f\in \mathcal{L}(\mathcal{X ...
- [家里蹲大学数学杂志]第049期2011年广州偏微分方程暑期班试题---随机PDE-可压NS-几何
随机偏微分方程 Throughout this section, let $(\Omega, \calF, \calF_t,\ P)$ be a complete filtered probabili ...
- [家里蹲大学数学杂志]第056期Tikhonov 泛函的变分
设 $\scrX$, $\scrY$ 是 Hilbert 空间, $T\in \scrL(\scrX,\scrY)$, $y_0\in\scrY$, $\alpha>0$. 则 Tikhonov ...
- [家里蹲大学数学杂志]第235期$L^p$ 调和函数恒为零
设 $u$ 是 $\bbR^n$ 上的调和函数, 且 $$\bex \sen{u}_{L^p}=\sex{\int_{\bbR^n}|u(y)|^p\rd y}^{1/p}<\infty. \e ...
- [家里蹲大学数学杂志]第269期韩青编《A Basic Course in Partial Differential Equations》 前五章习题解答
1.Introduction 2.First-order Differential Equations Exercise2.1. Find solutons of the following inti ...
随机推荐
- HTML 文本格式化<b><big><em><i><small><strong><sub><sup><ins><del>
<b> 标签-粗体 定义和用法: <b>标签规定粗体文本. 提示和注释 注释:根据 HTML5 规范,在没有其他合适标签更合适时,才应该把 <b> 标签作为最后的选 ...
- spring boot注解 --@EnableAsync 异步调用
EnableAsync注解的意思是可以异步执行,就是开启多线程的意思.可以标注在方法.类上. @Component public class Task { @Async public void doT ...
- SQL 解决in的参数烦恼(经典,简洁,高效)
原SQL是不能执行的:select * from 表A where 字段A in (select 逗号分隔的字段B from 表B where 条件) 解决方案:select b.* from (se ...
- iOS ShareSDK 使用
流量精灵软件中,也在大部分地方使用到了shareSDK 这个三方开源库.具体的有两种需求 a.弹出所有分享模块 b.只弹出指定的平台:如微信朋友圈和QQ . 配置方法,三方库中也很详细,这里我只有写出 ...
- SVG 2D入门13 - svg对决canvas
到目前为止,SVG与Canvas的主要特性均已经总结完毕了.它们都是HTML5中支持的2D图形展示技术,而且均支持向量图形.现在,我们就来比对一下这两种技术,分析一下它们的长处和适用场景.首先分析一下 ...
- HDU 4507 吉哥系列故事——恨7不成妻
需要推下平方和的式子..维护个数,和,平方和. #include<iostream> #include<cstdio> #include<cstring> #inc ...
- Windows下利用py2exe生成静默运行的命令行程序
py2exe是python的第三方库,可以利用它将你的python脚本编译成可执行文件(exe),而在实际的开发过程中生成的dos窗口很影响用户体验,建议按以下方式让exe静默运行. 首先将你的pyt ...
- Magento文件系统目录结构
magento │ .htaccess│ cron.php //系统cron程序,修改 linux的cron运行,加入magento的一些定时处理│ cron.sh│ favicon.ico ...
- Intent 四个重要属性
Intent作为联系各Activity之间的纽带,其作用并不仅仅只限于简单的数据传递.通过其自带的属性,其实可以方便的完成很多较为复杂的操作.例如直接调用拨号功能.直接自动调用合适的程序打开不同类型的 ...
- Java数据结构和算法之数组与简单排序
一.数组于简单排序 数组 数组(array)是相同类型变量的集合,可以使用共同的名字引用它.数组可被定义为任何类型,可以是一维或多维.数组中的一个特别要素是通过下标来访问它.数组提供了一种将有联系的信 ...