题意:http://www.lydsy.com/JudgeOnline/problem.php?id=2005

实际上把这些被挡住的点的坐标和能量值列举出来可以发现有个公式:

“对于坐标系第一象限任意的整点(即横纵坐标均为整数的点)p(n,m),

其与原点o(0,0)的连线上除过原点整点的个数为gcd(n,m)。

其他象限上个数则为gcd(abs(n),abs(m))”

答案就是sum(2*gcd(x,y)-1)  [x=(1..n),y=(1..m)]

//证明:http://www.cnblogs.com/huhuuu/archive/2011/11/25/2263803.html

公式进一步化简:

对于本题,gcd(x,y)的值一定不会超过max(n,m)。这样直接枚举gcd(x,y)所有可能的值,再套用hdu 1695给出来的那个G函数就行啦~

 #include <iostream>
#include <cstring>
#include <cmath>
using namespace std;
#define LL long long
#define MMX 100010
int mu[MMX],msum[MMX];
LL n,m;
bool check[MMX];
int prime[MMX]; void Moblus()
{
memset(check,false,sizeof(check));
mu[] = ;
int tot = ;
for(int i = ; i <= MMX; i++)
{
if( !check[i] )
{
prime[tot++] = i;
mu[i] = -;
}
for(int j = ; j < tot; j++)
{
if(i * prime[j] > MMX) break;
check[i * prime[j]] = true;
if( i % prime[j] == )
{
mu[i * prime[j]] = ;
break;
}
else
{
mu[i * prime[j]] = -mu[i];
}
}
}
msum[]=mu[];
for (int i=;i<=MMX;i++)
msum[i]=msum[i-]+mu[i];
} LL G(int n,int m) //加分块优化
{
LL ans = ;
if(n > m) swap(n,m);
for(int i = , la = ; i <= n; i = la+)
{
la = min(n/(n/i),m/(m/i));
ans += (LL)(msum[la] - msum[i-])*(n/i)*(m/i); //事先预处理:msum[n]=SUM(mu[1..n])
}
return ans;
} int main()
{
Moblus();
cin>>n>>m;
LL sum=;
for (LL i=;i<=max(m,n);i++)
sum+=i*G(m/i,n/i);
sum=*sum-n*m;
cout<<sum<<endl;
}

BZOJ2005 莫比乌斯反演的更多相关文章

  1. 【BZOJ2005】【NOI2010】能量采集(莫比乌斯反演,容斥原理)

    [BZOJ2005][NOI2010]能量采集(莫比乌斯反演,容斥原理) 题面 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量 ...

  2. BZOJ2005: [Noi2010]能量采集 莫比乌斯反演的另一种方法——nlogn筛

    分析:http://www.cnblogs.com/huhuuu/archive/2011/11/25/2263803.html 注:从这个题收获了两点 1,第一象限(x,y)到(0,0)的线段上整点 ...

  3. 【莫比乌斯反演】BZOJ2005 [NOI2010]能量采集

    Description 求sigma gcd(x,y)*2-1,1<=x<=n, 1<=y<=m.n, m<=1e5. Solution f(n)为gcd正好是n的(x, ...

  4. 莫比乌斯反演学习笔记+[POI2007]Zap(洛谷P3455,BZOJ1101)

    先看一道例题:[POI2007]Zap BZOJ 洛谷 题目大意:$T$ 组数据,求 $\sum^n_{i=1}\sum^m_{j=1}[gcd(i,j)=k]$ $1\leq T\leq 50000 ...

  5. 模板:数论 & 数论函数 & 莫比乌斯反演

    作为神秘奖励--?也是为了方便背. 所有的除法都是向下取整. 数论函数: \((f*g)(n)=\sum_{d|n}f(d)g(\frac{n}{d})\) \((Id*\mu)(n)=\sum_{d ...

  6. hdu1695 GCD(莫比乌斯反演)

    题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...

  7. BZOJ 2154: Crash的数字表格 [莫比乌斯反演]

    2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][ ...

  8. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  9. Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)

    题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...

随机推荐

  1. 关于在线预览word,excel,ppt,pdf的需求处理方法。

    参考文档:http://www.cnblogs.com/wolf-sun/p/3574278.html 我选用的方案:先用office com组件生成pdf,然后使用pdf.js在线预览pdf文档.在 ...

  2. 通用权限管理系统组件3.9 的 Oracle 数据库创建脚本参考

    ---------------------------------------------------- -- Export file for user USERCENTER -- -- Create ...

  3. salt yum安装lamp

    在批量安装软件前,先找台测试机yum装一遍,看是否报错等,是否依赖包全等 .         本次我们在dev环境下搞. 先看一下已搞成功的目录结构         定义dev环境的第二个好处     ...

  4. CSS background-position 问题

    今天在用background-position进行BODY背景图定位的时候发现100% 100%理应定位在右下角,结果却不一致,查了下语法也没问题 结果发现是background-attachment ...

  5. 阿里云安装LNMP以及更改网站文件和MySQL数据目录

    LNMP安装了哪些软件?安装目录在哪LNMP相关软件安装目录Nginx 目录: /usr/local/nginx/MySQL 目录 : /usr/local/mysql/MySQL数据库所在目录:/u ...

  6. swift---不同字体大小不同颜色label富文本设置

    agreeDeal = UILabel() //富文本,不同字体颜色大小和颜色 let labelString = "登录注册,表示您同意<服务条款及隐私政策>"as ...

  7. 从零开始,将ASP.NET Core部署到Linux生产环境

    研究.NET Core已经一段时间了,一直都是在Windows上开发,这2天尝试着将公司一个很简单的内部Web项目改造成了ASP.NET Core,并且部署到Linux上.生产环境如下: Linux ...

  8. SignalR与ActiveMQ结合构建实时通信

    一.概述 本教程主要阐释了如何利用SignalR与消息队列的结合,实现不同客户端的交互 SignalR如何和消息队列交互(暂使用ActiveMQ消息队列) SignalR寄宿在web中和其他Signa ...

  9. 【REST WCF】30分钟理论到实践

    先来点理论知识,来自 http://www.cnblogs.com/simonchen/articles/2220838.html 一.什么是Rest REST软件架构是由Roy Thomas Fie ...

  10. sql 重复数据只保留一条

    用SQL语句,删除掉重复项只保留一条在几千条记录里,存在着些相同的记录,如何能用SQL语句,删除掉重复的呢1.查找表中多余的重复记录,重复记录是根据单个字段(peopleId)来判断 select * ...