【BZOJ-2892&1171】强袭作战&大sz的游戏 权值线段树+单调队列+标记永久化+DP
2892: 强袭作战
Time Limit: 50 Sec Memory Limit: 512 MB
Submit: 45 Solved: 30
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
1 2 1
2 3 2
Sample Output
2
【数据规模和约定】
30%的数据满足N <=20000;
100%的数据满足2 <=N<= 2.5*10^5、0<=xi,yi,li<=2*10^9,1<=L<=2*10^9,xi<=yi.
HINT
Source
1171: 大sz的游戏
Time Limit: 50 Sec Memory Limit: 357 MB
Submit: 320 Solved: 98
[Submit][Status][Discuss]
Description
大sz最近在玩一个由星球大战改编的游戏。话说绝地武士当前共控制了N个星球。但是,西斯正在暗处悄悄地准备他们的复仇计划。绝地评议会也感觉到了这件事。于是,准备加派绝地武士到各星球防止西斯的突袭。一个星球受到攻击以后,会尽快通知到总基地。需要的时间越长的星球就需要越多绝地武士来防御。为了合理分配有限的武士,大sz需要你帮他求出每个星球各需要多少时间能够通知到总基地。由于某种原因,N个星球排成一条直线,编号1至N。其中总基地建在1号星球上。每个星球虽然都是绝地武士控制的,但是上面居住的生物不一定相同,并且科技水平也不一样。第i个星球能收到并分析波长在[xi, yi]之间的信号,并且也能够发出在这个区间的信号,但是不能发出其他任何波长的信号。由于技术原因,每个星球只能发信号到比自己编号小的距离不超过L的星球。特别地,强大的总基地可以接收任何波长的信号。每个星球处理接收到的数据需要1个单位时间,传输时间可以忽略不计。
Input
第一行两个正整数N、L。接下来N-1行,总共第i行包含了三个正整数xi、yi、li,其中li表示第i个星球距离1号星球li,满足li严格递增。
Output
总共N-1行,每行一个数分别表示2到N号星球至少需要多少单位时间,总基地能够处理好数据,如果无法传到总基地则输出-1。
Sample Input
3 1
1 2 1
2 3 2
input 2
3 3
1 2 1
2 3 2
Sample Output
1
2
output2
1
1
30%的数据满足N <=20000;
100%的数据满足2 <=N<= 2.5*10^5、0<=xi,yi,li<=2*10^9,1<=L<=2*10^9,xi<=yi.
HINT
Source
Solution
线段树标记永久化+单调队列+DP
首先一眼DP: $dp[i]=min(dp[j])+1$ 其中 $\left | l[i]-l[j] \right |<L,\left [ x[i],y[i] \right ]\bigcap \left [ x[j],y[j] \right ]\neq \O $
那么需要优化复杂度,考虑利用数据结构(可以利用很多种,这里选用权值线段树+单调队列)
x[],y[]范围过大,单很稀疏,离散,建权值线段树,支持区间修改区间查询;维护区间中的答案,需要在区间中加入一个单调队列
发现标记不适合下传,即标记需要永久化,和之前维护直线的思想类似,这样复杂度就一样能保证在$O(nlogn)$
如果当前区间完全覆盖,则不需要下传;维护的最小值,即区间的单调队列队首,和左右区间的最小三者取最小
查询的时候查询有交集的所有区间,线段树中节点的信息只是维护了完全包含于这个区间的区间的信息,我们还需要知道和这个区间有交集的但不包含于这个区间的信息,所以往子树递归的时候把路径上的信息也一块统计就好啦。
总结:
1.标记永久化的思想更加加深
2.对于类似这样的单调的问题,同样可以用线段树去维护,据说类似问题线段树是比CDQ之类还要无敌的??
3.对于每个线段树区间套上单调队列时,容易爆,开始手写单调队列,炸编译,改成动态RE,所以可以考虑用<list>
Code
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<list>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-')f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define maxn 250010
#define inf 0x7fffffff
int N,L,tot,ls[maxn<<],val[maxn<<],dp[maxn],que[maxn],x[maxn],y[maxn],l[maxn];
struct DQueueNode{list<int>q;}Tree[maxn<<];
int Get(int now) {return !Tree[now].q.empty()?dp[Tree[now].q.front()]:inf;}
void update(int now,int l,int r) {val[now]=min(Get(now),(l==r)?inf:min(val[now<<],val[now<<|]));}
void Build(int now,int l,int r)
{
val[now]=inf;
if (l==r) return;
int mid=(l+r)>>;
Build(now<<,l,mid); Build(now<<|,mid+,r);
}
void Insert(int now,int l,int r,int L,int R,int x,int f)
{
if (L<=l && R>=r)
{
if (f) while (!Tree[now].q.empty() && Tree[now].q.front()<=x) Tree[now].q.pop_front();
else {while (!Tree[now].q.empty() && dp[Tree[now].q.back()]>=dp[x]) Tree[now].q.pop_back(); Tree[now].q.push_back(x);}
update(now,l,r);
return;
}
int mid=(l+r)>>;
if (L<=mid) Insert(now<<,l,mid,L,R,x,f);
if (R>mid) Insert(now<<|,mid+,r,L,R,x,f);
update(now,l,r);
}
int Query(int now,int l,int r,int L,int R)
{
if (L<=l && R>=r) return val[now];
int mid=(l+r)>>,re=Get(now);
if (L<=mid) re=min(re,Query(now<<,l,mid,L,R));
if (R>mid) re=min(re,Query(now<<|,mid+,r,L,R));
return re;
}
int main()
{
N=read(),L=read();
for (int i=; i<=N-; i++) ls[++tot]=x[i]=read(),ls[++tot]=y[i]=read(),l[i]=read();
sort(ls+,ls+tot+);
int Tot=; for (int i=; i<=tot; i++) if (ls[i]!=ls[i-]) ls[++Tot]=ls[i];
for (int i=; i<=N-; i++) x[i]=lower_bound(ls+,ls+Tot+,x[i])-ls,y[i]=lower_bound(ls+,ls+Tot+,y[i])-ls;
Tot=unique(ls+,ls+Tot+)-ls-;
// for (int i=1; i<=N-1; i++) printf("%d %d\n",x[i],y[i]);
Build(,,Tot);
int he=-,ta=-; dp[]=; x[]=,y[]=Tot; que[++ta]=;
Insert(,,Tot,x[],y[],,);
for (int i=; i<=N-; i++)
{
int tmp;
while (he<ta && l[i]-l[que[he+]]>L) tmp=que[++he],Insert(,,Tot,x[tmp],y[tmp],tmp,);
dp[i]=Query(,,Tot,x[i],y[i])+;
if (dp[i]!=inf+) printf("%d\n",dp[i]),que[++ta]=i,Insert(,,Tot,x[i],y[i],i,);
else puts("-1");
}
return ;
}
【BZOJ-2892&1171】强袭作战&大sz的游戏 权值线段树+单调队列+标记永久化+DP的更多相关文章
- [BZOJ 3110] [luogu 3332] [ZJOI 2013]k大数查询(权值线段树套线段树)
[BZOJ 3110] [luogu 3332] [ZJOI 2013]k大数查询(权值线段树套线段树) 题面 原题面有点歧义,不过从样例可以看出来真正的意思 有n个位置,每个位置可以看做一个集合. ...
- 【BZOJ1171】大sz的游戏(线段树+单调队列)
点此看题面 大致题意: 有\(n\)个点,两点间最大通讯距离为\(L\).已知除\(1\)号点外第\(i\)个点能够发出和接收的信号区间\([l_i,r_i]\)以及到\(1\)号点的距离\(dis_ ...
- 动态求区间K大值(权值线段树)
我们知道我们可以通过主席树来维护静态区间第K大值.我们又知道主席树满足可加性,所以我们可以用树状数组来维护主席树,树状数组的每一个节点都可以开一颗主席树,然后一起做. 我们注意到树状数组的每一棵树都和 ...
- BZOJ 4777 Usaco2017 Open Switch Grass Kruskal+替罪羊树+权值线段树
这道题首先可以看出答案一定是一条边,而且答案一定在最小生成树上,那么我们就可以在这个最小生成树上维护他与异色儿子的边最小值,所以我们就可以已通过Kruskal和一棵平衡树来解决,时间复杂度是O(n*l ...
- [BZOJ 3295] [luogu 3157] [CQOI2011]动态逆序对(树状数组套权值线段树)
[BZOJ 3295] [luogu 3157] [CQOI2011] 动态逆序对 (树状数组套权值线段树) 题面 给出一个长度为n的排列,每次操作删除一个数,求每次操作前排列逆序对的个数 分析 每次 ...
- BZOJ 3110 ZJOI 2013 K大数查询 树套树(权值线段树套区间线段树)
题目大意:有一些位置.这些位置上能够放若干个数字. 如今有两种操作. 1.在区间l到r上加入一个数字x 2.求出l到r上的第k大的数字是什么 思路:这样的题一看就是树套树,关键是怎么套,怎么写.(话说 ...
- BZOJ 4605 崂山白花蛇草水(权值线段树+KD树)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4605 [题目大意] 操作 1 x y k 表示在点(x,y)上放置k个物品, 操作 2 ...
- bzoj 4627: [BeiJing2016]回转寿司 -- 权值线段树
4627: [BeiJing2016]回转寿司 Time Limit: 10 Sec Memory Limit: 256 MB Description 酷爱日料的小Z经常光顾学校东门外的回转寿司店. ...
- BZOJ 1012 线段树||单调队列
非常裸的线段树 || 单调队列: 假设一个节点在队列中既没有时间优势(早点入队)也没有值优势(值更大),那么显然不管在如何的情况下都不会被选为最大值. 既然它仅仅在末尾选.那么自然能够满足以上的条件 ...
随机推荐
- X200s,Debian 8(Jessie) 安装流水帐
1. U盘启动安装 a. 因为无线网卡驱动是non-free,需要另外下载,对应X200s,文件是iwlwifi-5000-5.ucode,下完放到安装U盘的根目录下,安装时就不会再提示而是直接安装 ...
- sqlserver 通用分页存储过程
来源:http://www.jb51.net/article/19936.htm CREATE PROCEDURE commonPagination ), --要显示的列名,用逗号隔开 ), --要查 ...
- 阿里云Center OS 6.2 Nginx 配置 SSL/TLS HTTPS配置
1.通过https://www.startssl.com/ 免费SSL证书 STARTSSL 跟VeriSign一样,StartSSL(网址:http://www.startssl.com,公司名:S ...
- [转]java去除List中重复的元素
java去除List中重复的元素 如果用Set ,倘若list里边的元素不是基本数据类型而是对象, 那么请覆写Object的boolean equals(Object obj) 和int ...
- 链路层的简介和MTU
链路层杂谈(凭个人理解瞎说的,欢迎拍砖) 链路层,说白了就是把网络层的IP数据处理一下,加点东西,放到物理层上去. 加的东西:源.目的地址和CRC校验值,有的还有类型这个字段,用来区分协议. ...
- linux中vi编辑器的使用
vi编辑器是所有Unix及Linux系统下标准的编辑器,它的强大不逊色于任何最新的文本 编辑器,这里只是简单地介绍一下它的用法和一小部分指令.由于对Unix及Linux系统的任 何版本,vi编辑器是完 ...
- 【位运算经典应用】 N皇后问题
说到位运算的经典应用,不得不说N皇后问题. 学过程序设计的都知道N皇后问题,没听过也没关系.很简单,最传统的的N皇后问题是这个样子的,给你一个n * n大小的board,让你放n个皇后(国际象棋),要 ...
- VS代码管理插件AnkhSvn
下载AnKHSvn软件,启动VS,源代码管理工具选择AnKHSvn 在视图-〉其它窗口-〉Pending Change->提交变化的更改
- 反距离权重插值inverse distance weighting,IDW
反距离权重 (IDW) 插值显式假设:彼此距离较近的事物要比彼此距离较远的事物更相似.当为任何未测量的位置预测值时,反距离权重法会采用预测位置周围的测量值.与距离预测位置较远的测量值相比,距离预测位置 ...
- CSS 问题集锦
[1]让DIV中的内容居中 1.文字垂直居中,关键代码:height:100px;line-height:100px(两个值要相等) <div style="margin:0 auto ...