3910: 火车

Time Limit: 20 Sec  Memory Limit: 512 MB
Submit: 262  Solved: 90
[Submit][Status][Discuss]

Description

A 国有n 个城市,城市之间有一些双向道路相连,并且城市两两之间有唯一路径。现在有火车在城市 a,需要经过m 个城市。火车按照以下规则行驶:每次行驶到还没有经过的城市中在 m 个城市中最靠前的。现在小 A 想知道火车经过这m 个城市后所经过的道路数量。 

Input

第一行三个整数 n、m、a,表示城市数量、需要经过的城市数量,火车开始时所在位置。 
接下来 n-1 行,每行两个整数 x和y,表示 x 和y之间有一条双向道路。 
接下来一行 m 个整数,表示需要经过的城市。 

Output

一行一个整数,表示火车经过的道路数量。 

Sample Input

5 4 2
1 2
2 3
3 4
4 5
4 3 1 5

Sample Output

9

HINT

N<=500000 ,M<=400000 

Source

Solution

水题- -最多算个并查集的有趣应用

很显然直接询问用LCA统计答案即可

至于处理走过的路径,拿并查集维护一下,很简单的把起止点到LCA的点合并一下,询问的两个点如果属于一个集合显然走过

Code

#include<iostream>
#include<cmath>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define maxn 501000
int n,m,a;
struct EdgeNode{int to,next;}edge[maxn<<];
int head[maxn],cnt;
void add(int u,int v) {cnt++; edge[cnt].next=head[u]; head[u]=cnt; edge[cnt].to=v;}
void insert(int u,int v) {add(u,v); add(v,u);}
int deep[maxn],father[maxn][],ffff[maxn];
long long ans;
void dfs(int now)
{
for (int i=; i<=; i++)
if (deep[now]>=(<<i))
father[now][i]=father[father[now][i-]][i-];
else
break;
for (int i=head[now]; i; i=edge[i].next)
if (edge[i].to!=father[now][])
{
deep[edge[i].to]=deep[now]+;
father[edge[i].to][]=now;
dfs(edge[i].to);
}
}
int LCA(int x,int y)
{
if (deep[x]<deep[y]) swap(x,y);
int dd=deep[x]-deep[y];
for (int i=; (<<i)<=dd; i++)
if (dd&(<<i)) x=father[x][i];
for (int i=; i>=; i--)
if (father[x][i]!=father[y][i])
x=father[x][i],y=father[y][i];
if (x==y) return x;
return father[x][];
}
int find(int x) {if (ffff[x]==x) return x; ffff[x]=find(ffff[x]); return ffff[x];}
int ff1,ff2;
int main()
{
n=read(),m=read(),a=read();
for (int u,v,i=; i<=n-; i++)
u=read(),v=read(),insert(u,v);
dfs();
for (int i=; i<=n; i++) ffff[i]=i;
for (int i=; i<=m; i++)
{
int x=read();
int fa=find(a),fx=find(x);
if (fa==fx) continue;
int lca=LCA(a,x);
ans+=deep[a]-deep[lca]+deep[x]-deep[lca];
int ta=a,tx=x,flca; flca=find(lca);
while (find(ta)!=flca) {ff1=find(ta); ffff[ff1]=flca; ta=father[ff1][];}
while (find(tx)!=flca) {ff2=find(tx); ffff[ff2]=flca; tx=father[ff2][];}
a=x;
}
cout<<ans;
return ;
}

电脑炸出奇怪的错误,所以写的比较鬼畜- -

【BZOJ-3910】火车 倍增LCA + 并查集的更多相关文章

  1. BZOJ 3910 火车 倍增LCA

    本题并不需要并查集,每次查询一次最近公共祖先,并倍增求出需要被新标记的路径. 这样保证时间复杂度是 O(nlogn)O(nlogn)O(nlogn) 的. Code: #include<cstd ...

  2. 【CodeForces】827 D. Best Edge Weight 最小生成树+倍增LCA+并查集

    [题目]D. Best Edge Weight [题意]给定n个点m条边的带边权无向连通图,对每条边求最大边权,满足其他边权不变的前提下图的任意最小生成树都经过它.n,m<=2*10^5,1&l ...

  3. cf827D Best Edge Weight (kruskal+倍增lca+并查集)

    先用kruskal处理出一个最小生成树 对于非树边,倍增找出两端点间的最大边权-1就是答案 对于树边,如果它能被替代,就要有一条非树边,两端点在树上的路径覆盖了这条树边,而且边权不大于这条树边 这里可 ...

  4. Codevs 3287 货车运输 2013年NOIP全国联赛提高组(带权LCA+并查集+最大生成树)

    3287 货车运输 2013年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 传送门 题目描述 Description A 国有 n 座 ...

  5. BZOJ.2054.疯狂的馒头(并查集)

    BZOJ 倒序处理,就是并查集傻题了.. 并查集就是确定下一个未染色位置的,直接跳到那个位置染.然而我越想越麻烦=-= 以为有线性的做法,发现还是要并查集.. 数据随机线段树也能过去. //18400 ...

  6. 2021.08.03 BZOJ 疯狂的馒头(并查集)

    2021.08.03 BZOJ 疯狂的馒头(并查集) 疯狂的馒头 - 题目 - 黑暗爆炸OJ (darkbzoj.tk) 重点: 1.并查集的神奇运用 2.离线化 题意: 给一个长为n的序列,进行m次 ...

  7. BZOJ 3910: 火车

    3910: 火车 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 358  Solved: 130[Submit][Status][Discuss] D ...

  8. [bzoj3123][sdoi2013森林] (树上主席树+lca+并查集启发式合并+暴力重构森林)

    Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数 ...

  9. HDU 5458 Stability(双连通分量+LCA+并查集+树状数组)(2015 ACM/ICPC Asia Regional Shenyang Online)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5458 Problem Description Given an undirected connecte ...

随机推荐

  1. C# winform生成天气预报(转)

    原文地址 http://www.cnblogs.com/ChowYy/p/3382216.html?utm_source=tuicool&utm_medium=referral 项目需要,然后 ...

  2. MySQL的mysql_insert_id和LAST_INSERT_ID(转)

    本文介绍的是mysql中last_insert_id和mysql_insert_id的区别 1 mysql_insert_id 一.PHP获取MYSQL新插入数据的ID mysql_insert_id ...

  3. FSL - DualRegression

    Source:http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/DualRegression Research Overview A common need for anal ...

  4. Entity Framework 迁移命令 详解

    一.Entity Framework 迁移命令(get-help EntityFramework) Enable-Migrations 启用迁移 Add-Migration 为挂起的Model变化添加 ...

  5. Java设计模式之-----工厂模式(简单工厂,抽象工厂)

    一.工厂模式主要是为创建对象提供过渡接口,以便将创建对象的具体过程屏蔽隔离起来,达到提高灵活性的目的. 工厂模式在<Java与模式>中分为三类:1)简单工厂模式(Simple Factor ...

  6. 求解最大正方形面积 — leetcode 221. Maximal Square

    本来也想像园友一样,写一篇总结告别 2015,或者说告别即将过去的羊年,但是过去一年发生的事情,实在是出乎平常人的想象,也不具有代表性,于是计划在今年 6 月份写一篇 "半年总结" ...

  7. Windjs应用

    一个异步的js类库,应用价值不大,所以代码也没在维护了.在做h5特效或者游戏动画方面有点用处. $await是Windjs的核心api.具体可以check 浅谈Jscex的$await语义及异步任务模 ...

  8. 一起写一个JSON解析器

    [本篇博文会介绍JSON解析的原理与实现,并一步一步写出来一个简单但实用的JSON解析器,项目地址:SimpleJSON.希望通过这篇博文,能让我们以后与JSON打交道时更加得心应手.由于个人水平有限 ...

  9. C#开发Windows服务

    Microsoft Windows 服务(即,以前的 NT 服务)使您能够创建在它们自己的 Windows 会话中可长时间运行的可执行应用程序. 服务可以在计算机启动时自动启动,可以暂停和重新启动而且 ...

  10. .Net简单图片系统-本地存储和分布式存储

    本地存储 所谓本地存储就是将上传图片保存到图片服务器的本地磁盘上. if (ConfigHelper.GetConfigString("SaveMode") == "Lo ...