#期望dp#CF1810G The Maximum Prefix
分析
考虑最大前缀和满足两个条件,就是所有前缀和都不超过,以及一定有一个等于。
那么就要保证它能达到最大值且一直不能高于它
设 \(dp[i][j][0/1]\) 表示前 \(i\) 个数离达到最大值还需要 \(j\) 且未/已经达到过最大值。
初始化就是 \(dp[0][j][j==0]=h[j]\),然后转移就是看 \(j\) 减到零的话第三维就为一,就不断加一减一。
对于每个 \(i\) 输出 \(\sum_{j=0}^{n}dp[i][j][1]\),因为末尾不一定要达到最大值,所以可以为任意值,只要达到过即可
代码
#include <cstdio>
#include <cctype>
using namespace std;
const int N=5011,mod=1000000007;
int n,p[N],dp[N][2],f[N][2],ans;
int iut(){
int ans=0; char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=ans*10+c-48,c=getchar();
return ans;
}
void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
int ksm(int x,int y){
int ans=1;
for (;y;y>>=1,x=1ll*x*x%mod)
if (y&1) ans=1ll*ans*x%mod;
return ans;
}
void Mo(int &x,int y){x=x+y>=mod?x+y-mod:x+y;}
int main(){
for (int T=iut();T;--T){
n=iut();
for (int i=1;i<=n;++i){
int x=iut(),y=iut();
p[i]=1ll*x*ksm(y,mod-2)%mod;
}
for (int i=0;i<=n;++i) dp[i][i==0]=iut();
for (int i=1;i<=n;++i){
ans=0;
for (int j=0;j<=n;++j)
for (int k=0;k<2;++k) f[j][k]=dp[j][k],dp[j][k]=0;
for (int k=0;k<2;++k){
for (int j=0;j<n;++j) Mo(dp[j][k|(j==0)],1ll*f[j+1][k]*p[i]%mod);
for (int j=1;j<=n;++j) Mo(dp[j][k],f[j-1][k]*(mod+1ll-p[i])%mod);
}
for (int j=0;j<=n;++j) Mo(ans,dp[j][1]);
print(ans),putchar(i==n?10:32);
}
for (int j=0;j<=n;++j)
for (int k=0;k<2;++k)
dp[j][k]=f[j][k]=0;
}
return 0;
}
#期望dp#CF1810G The Maximum Prefix的更多相关文章
- 【BZOJ-1419】Red is good 概率期望DP
1419: Red is good Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 660 Solved: 257[Submit][Status][Di ...
- [NOIP2016]换教室 D1 T3 Floyed+期望DP
[NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...
- HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)
题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...
- 【BZOJ-4008】亚瑟王 概率与期望 + DP
4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec Memory Limit: 512 MBSec Special JudgeSubmit: 832 Solved: 5 ...
- 期望dp BZOJ3450+BZOJ4318
BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...
- HDU 4405 期望DP
期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n ...
- POJ 2096 【期望DP】
题意: 有n种选择,每种选择对应m种状态.每种选择发生的概率相等,每种选择中对应的每种状态发生的概率相等. 求n种选择和m种状态中每种至少发生一次的期望. 期望DP好别扭啊.要用倒推的方法. dp[i ...
- ZOJ 3822 Domination 期望dp
Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...
- poj 2096 Collecting Bugs(期望 dp 概率 推导 分类讨论)
Description Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other ...
- uva11600 状压期望dp
一般的期望dp是, dp[i] = dp[j] * p[j] + 1; 即走到下一步需要1的时间,然后加上 下一步走到目标的期望*这一步走到下一步的概率 这一题,我们将联通分块缩为一个点,因为联通块都 ...
随机推荐
- 初始pyqt5
开发pyqt5桌面应用 必须使用两个类:QApplication和QWidget.都在PyQt5.QtWidgets中 安装 pip install pyqt5 -i https://pypi.dou ...
- Swift高级进阶-Swift编译过程,”SIL代码“,“IR语法”
swift编译过程 如果不懂LLVM,Clang的同学可以去了解下它的知识点 一些文章中有详细介绍 OC 的编译过程 ,本文来探索一下 Swift 的编译过程.Swift 的编译过程中使用 Swif ...
- 在Directory.Build.props中用全局变量来管理包的版本号
1.顶级目录下放置Directory.Build.props文件 为每个软件产品,分配一块独立的windows盘符,在根目录下放置名为Directory.Build.props的文件即可.这个文件名是 ...
- 【Azure 环境】微软云上主机,服务的安全更新疑问
[问题一]微软云上的虚拟机,不论是Windows系统or Linux 系统,系统的安全补丁是由微软云平台 打上补丁进行修复,还是使用虚拟机的用户手动更新修复呢? [答]这些补丁不会由平台来直接操作 ...
- 【Azure 应用服务】FTP 部署 Vue 生成的静态文件至 Linux App Service 后,访问App Service URL依旧显示Azure默认页面问题
问题描述 将 JS项目打包为静态文件后,通过 FTP 上传到 App Service For Linux 的 /home/site/wwwroot文件夹中.但打开App Service URL 后依旧 ...
- 【Azure Developer】CURL 发送Oauth2 Token请求获取到 404 Not Found 问题
问题描述 当使用 Postman 向AAD 发送如下请求时候,得到了404 Not Found的错误. "curl --location --request POST 'https://lo ...
- 【Azure Redis 缓存】Redis导出数据文件变小 / 在新的Redis复原后数据大小压缩近一倍问题分析
问题描述 使用 Azure Cache for Redis 服务,在两个Redis服务之间进行数据导入和导出测试.在Redis中原本有7G的数据值,但是导出时候发现文件大小仅仅只有30MB左右,这个压 ...
- spring重点后置处理器
1. DefaultListableBeanFactory的作用: 默认实现了ListableBeanFactory和BeanDefinitionRegistry接口,基于bean definitio ...
- 7、zookeeper应用场景-分布式锁
分布式锁 实现原理:有序节点+watch监听机制实现 分布式锁有多种实现方式,比如通过数据库.redis都可实现.作为分布式协同工具Zookeeper,当然也有着标准的实现方式.下面介绍在zookee ...
- Kubernetes CKA考试之Killer Simulator(下)
写在前面 个人微信公众号:密码应用技术实战 个人博客园首页:https://www.cnblogs.com/informatics/ 注:学习交流使用 目录 写在前面 Question 16 | Na ...