洛谷题面

CF1810G


分析

考虑最大前缀和满足两个条件,就是所有前缀和都不超过,以及一定有一个等于。

那么就要保证它能达到最大值且一直不能高于它

设 \(dp[i][j][0/1]\) 表示前 \(i\) 个数离达到最大值还需要 \(j\) 且未/已经达到过最大值。

初始化就是 \(dp[0][j][j==0]=h[j]\),然后转移就是看 \(j\) 减到零的话第三维就为一,就不断加一减一。

对于每个 \(i\) 输出 \(\sum_{j=0}^{n}dp[i][j][1]\),因为末尾不一定要达到最大值,所以可以为任意值,只要达到过即可


代码

#include <cstdio>
#include <cctype>
using namespace std;
const int N=5011,mod=1000000007;
int n,p[N],dp[N][2],f[N][2],ans;
int iut(){
int ans=0; char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=ans*10+c-48,c=getchar();
return ans;
}
void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
int ksm(int x,int y){
int ans=1;
for (;y;y>>=1,x=1ll*x*x%mod)
if (y&1) ans=1ll*ans*x%mod;
return ans;
}
void Mo(int &x,int y){x=x+y>=mod?x+y-mod:x+y;}
int main(){
for (int T=iut();T;--T){
n=iut();
for (int i=1;i<=n;++i){
int x=iut(),y=iut();
p[i]=1ll*x*ksm(y,mod-2)%mod;
}
for (int i=0;i<=n;++i) dp[i][i==0]=iut();
for (int i=1;i<=n;++i){
ans=0;
for (int j=0;j<=n;++j)
for (int k=0;k<2;++k) f[j][k]=dp[j][k],dp[j][k]=0;
for (int k=0;k<2;++k){
for (int j=0;j<n;++j) Mo(dp[j][k|(j==0)],1ll*f[j+1][k]*p[i]%mod);
for (int j=1;j<=n;++j) Mo(dp[j][k],f[j-1][k]*(mod+1ll-p[i])%mod);
}
for (int j=0;j<=n;++j) Mo(ans,dp[j][1]);
print(ans),putchar(i==n?10:32);
}
for (int j=0;j<=n;++j)
for (int k=0;k<2;++k)
dp[j][k]=f[j][k]=0;
}
return 0;
}

#期望dp#CF1810G The Maximum Prefix的更多相关文章

  1. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  2. [NOIP2016]换教室 D1 T3 Floyed+期望DP

    [NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...

  3. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  4. 【BZOJ-4008】亚瑟王 概率与期望 + DP

    4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 832  Solved: 5 ...

  5. 期望dp BZOJ3450+BZOJ4318

    BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...

  6. HDU 4405 期望DP

    期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n ...

  7. POJ 2096 【期望DP】

    题意: 有n种选择,每种选择对应m种状态.每种选择发生的概率相等,每种选择中对应的每种状态发生的概率相等. 求n种选择和m种状态中每种至少发生一次的期望. 期望DP好别扭啊.要用倒推的方法. dp[i ...

  8. ZOJ 3822 Domination 期望dp

    Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...

  9. poj 2096 Collecting Bugs(期望 dp 概率 推导 分类讨论)

    Description Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other ...

  10. uva11600 状压期望dp

    一般的期望dp是, dp[i] = dp[j] * p[j] + 1; 即走到下一步需要1的时间,然后加上 下一步走到目标的期望*这一步走到下一步的概率 这一题,我们将联通分块缩为一个点,因为联通块都 ...

随机推荐

  1. win32 - 以编程方式访问远程计算机上的文件

    第一步,在一台计算机上将某个驱动器或者某个文件夹设为sharing模式.这是我们需要访问的共享文件夹.(不需要设置everyone权限) 第二步,我们需要为两台在同一domain下的计算机上建立连接. ...

  2. [Android逆向] 重打包时报BrutException

    执行apktool b --use-aapt2 进行重打包时,重打包失败,抛出异常 apktool b /Users/***/work/appsApk/testApp --use-aapt2 I: U ...

  3. shell之sort,uniq,cut,tr

    # sort主要是要理解域 # sort选项 -c 测试文件是否已经分类 -m 合并两个分类文件 -u 删除所有复制行 -o 存储sort结果的输出文件名 -b 使用域进行分类时,忽略第一个空格 -n ...

  4. React 组件通信方式

    人生的游戏不在于拿了一副好牌,而在于怎样去打好坏牌,世上没有常胜将军,勇于超越自我者才能得到最后的奖杯. 1. 父子组件通信方式 1.1 父组件传递到子组件 直接通过属性进行传递,数据的传递可以提高组 ...

  5. docker开发

    Docker docker介绍 Docker是一个客户端-服务器(C/S)架构程序.本质上是通过go语言对lxc技术的一个封装,遵守Restful规范 docker hub注册一个账号(用来拉取镜像) ...

  6. macOS安装RZ,SZ

    使用brew 安装lrzsz sudo brew install lrzsz 安装完成后检查是否存在. ls -alh /usr/local/bin/sz 如果安装报错可以手动下载压缩包安装,安装地址 ...

  7. C++之指针变量的定义和使用

    从b站上黑马程序员的c++课里学到的C++之指针变量的定义和使用 指针变量的定义和使用 简单理解指针就是地址. 内存编号是从0开始记录的,一般用16进制数字表示 1 #include <iost ...

  8. XAF Number(编号)

    前言 编号在各类系统中都会存在,同时它还会根据业务场景的不同,会有不同的生成规则.XAF提供了一个编号生成助手(DistributedIdGeneratorHelper),它能在多并发的情况下,生成一 ...

  9. 使用Zabbix监控openstack的系统资源

    1 概述 OpenStack是一个开源的云计算管理平台项目,是一系列软件开源项目的组合.由NASA(美国国家航空航天局)和Rackspace合作研发并发起,以Apache许可证(Apache软件基金会 ...

  10. function 的入参 如果是指针的话,如果你用的好的话,会颠覆三观啊 这里就是指对象,数组不用考虑 // 夏娃的苹果

    function 的入参 如果是指针的话,如果你用的好的话,会颠覆三观啊 这里就是指对象,数组不用考虑 这就是一颗 夏娃的苹果