洛谷题面

CF1810G


分析

考虑最大前缀和满足两个条件,就是所有前缀和都不超过,以及一定有一个等于。

那么就要保证它能达到最大值且一直不能高于它

设 \(dp[i][j][0/1]\) 表示前 \(i\) 个数离达到最大值还需要 \(j\) 且未/已经达到过最大值。

初始化就是 \(dp[0][j][j==0]=h[j]\),然后转移就是看 \(j\) 减到零的话第三维就为一,就不断加一减一。

对于每个 \(i\) 输出 \(\sum_{j=0}^{n}dp[i][j][1]\),因为末尾不一定要达到最大值,所以可以为任意值,只要达到过即可


代码

#include <cstdio>
#include <cctype>
using namespace std;
const int N=5011,mod=1000000007;
int n,p[N],dp[N][2],f[N][2],ans;
int iut(){
int ans=0; char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=ans*10+c-48,c=getchar();
return ans;
}
void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
int ksm(int x,int y){
int ans=1;
for (;y;y>>=1,x=1ll*x*x%mod)
if (y&1) ans=1ll*ans*x%mod;
return ans;
}
void Mo(int &x,int y){x=x+y>=mod?x+y-mod:x+y;}
int main(){
for (int T=iut();T;--T){
n=iut();
for (int i=1;i<=n;++i){
int x=iut(),y=iut();
p[i]=1ll*x*ksm(y,mod-2)%mod;
}
for (int i=0;i<=n;++i) dp[i][i==0]=iut();
for (int i=1;i<=n;++i){
ans=0;
for (int j=0;j<=n;++j)
for (int k=0;k<2;++k) f[j][k]=dp[j][k],dp[j][k]=0;
for (int k=0;k<2;++k){
for (int j=0;j<n;++j) Mo(dp[j][k|(j==0)],1ll*f[j+1][k]*p[i]%mod);
for (int j=1;j<=n;++j) Mo(dp[j][k],f[j-1][k]*(mod+1ll-p[i])%mod);
}
for (int j=0;j<=n;++j) Mo(ans,dp[j][1]);
print(ans),putchar(i==n?10:32);
}
for (int j=0;j<=n;++j)
for (int k=0;k<2;++k)
dp[j][k]=f[j][k]=0;
}
return 0;
}

#期望dp#CF1810G The Maximum Prefix的更多相关文章

  1. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  2. [NOIP2016]换教室 D1 T3 Floyed+期望DP

    [NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...

  3. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  4. 【BZOJ-4008】亚瑟王 概率与期望 + DP

    4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 832  Solved: 5 ...

  5. 期望dp BZOJ3450+BZOJ4318

    BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...

  6. HDU 4405 期望DP

    期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n ...

  7. POJ 2096 【期望DP】

    题意: 有n种选择,每种选择对应m种状态.每种选择发生的概率相等,每种选择中对应的每种状态发生的概率相等. 求n种选择和m种状态中每种至少发生一次的期望. 期望DP好别扭啊.要用倒推的方法. dp[i ...

  8. ZOJ 3822 Domination 期望dp

    Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...

  9. poj 2096 Collecting Bugs(期望 dp 概率 推导 分类讨论)

    Description Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other ...

  10. uva11600 状压期望dp

    一般的期望dp是, dp[i] = dp[j] * p[j] + 1; 即走到下一步需要1的时间,然后加上 下一步走到目标的期望*这一步走到下一步的概率 这一题,我们将联通分块缩为一个点,因为联通块都 ...

随机推荐

  1. 初始pyqt5

    开发pyqt5桌面应用 必须使用两个类:QApplication和QWidget.都在PyQt5.QtWidgets中 安装 pip install pyqt5 -i https://pypi.dou ...

  2. Swift高级进阶-Swift编译过程,”SIL代码“,“IR语法”

    swift编译过程 如果不懂LLVM,Clang的同学可以去了解下它的知识点  一些文章中有详细介绍 OC 的编译过程 ,本文来探索一下 Swift 的编译过程.Swift 的编译过程中使用 Swif ...

  3. 在Directory.Build.props中用全局变量来管理包的版本号

    1.顶级目录下放置Directory.Build.props文件 为每个软件产品,分配一块独立的windows盘符,在根目录下放置名为Directory.Build.props的文件即可.这个文件名是 ...

  4. 【Azure 环境】微软云上主机,服务的安全更新疑问

    [问题一]微软云上的虚拟机,不论是Windows系统or Linux 系统,系统的安全补丁是由微软云平台   打上补丁进行修复,还是使用虚拟机的用户手动更新修复呢? [答]这些补丁不会由平台来直接操作 ...

  5. 【Azure 应用服务】FTP 部署 Vue 生成的静态文件至 Linux App Service 后,访问App Service URL依旧显示Azure默认页面问题

    问题描述 将 JS项目打包为静态文件后,通过 FTP 上传到 App Service For Linux 的 /home/site/wwwroot文件夹中.但打开App Service URL 后依旧 ...

  6. 【Azure Developer】CURL 发送Oauth2 Token请求获取到 404 Not Found 问题

    问题描述 当使用 Postman 向AAD 发送如下请求时候,得到了404 Not Found的错误. "curl --location --request POST 'https://lo ...

  7. 【Azure Redis 缓存】Redis导出数据文件变小 / 在新的Redis复原后数据大小压缩近一倍问题分析

    问题描述 使用 Azure Cache for Redis 服务,在两个Redis服务之间进行数据导入和导出测试.在Redis中原本有7G的数据值,但是导出时候发现文件大小仅仅只有30MB左右,这个压 ...

  8. spring重点后置处理器

    1. DefaultListableBeanFactory的作用: 默认实现了ListableBeanFactory和BeanDefinitionRegistry接口,基于bean definitio ...

  9. 7、zookeeper应用场景-分布式锁

    分布式锁 实现原理:有序节点+watch监听机制实现 分布式锁有多种实现方式,比如通过数据库.redis都可实现.作为分布式协同工具Zookeeper,当然也有着标准的实现方式.下面介绍在zookee ...

  10. Kubernetes CKA考试之Killer Simulator(下)

    写在前面 个人微信公众号:密码应用技术实战 个人博客园首页:https://www.cnblogs.com/informatics/ 注:学习交流使用 目录 写在前面 Question 16 | Na ...