抓包分析RST报文
大家好,我是蓝胖子,今天我们来分析下网络连接中经常出现的RST信号,连接中出现RST信号意味着这条链接将会断开,来看下什么时候会触发RST信号,这在分析连接断开的原因时十分有帮助。
本文的讲解视频已经上传 抓包分析RST报文
在开始分析触发RST的场景之前,我们先来准备下需要的客户端和服务端代码,以方便我们进行测试。
服务端代码目前先是在8080端口监听,然后将接收到的消息打印出来。
func main() {
listen, err := net.Listen("tcp", ":8080")
if err != nil {
log.Fatal(err)
}
go func() {
for {
conn, err := listen.Accept()
if err != nil {
log.Fatal(err)
}
buf := make([]byte, 1024)
n, err := conn.Read(buf)
if err != nil {
log.Fatal(err)
}
fmt.Println(string(buf[:n]))
}()
ch := make(chan int)
<-ch
}
客户端代码,连接8080端口然后打印hello world
func main() {
conn, err := net.Dial("tcp", "192.168.2.3:8080")
if err != nil {
log.Fatal(err)
}
_, err = conn.Write([]byte("hello world"))
if err != nil {
log.Fatal(err)
}
}
现在,来让我们测试下触发RST的各种场景。
什么时候会触发RST
对端没有监听端口时
这个场景比较容器,不启动服务端,然后对8080端口进行抓包,接着直接运行客户端程序,看看此时客户端收到的数据包是怎样的。
(base) ➜ ~ sudo tcpdump -i lo0 port 8080
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on lo0, link-type NULL (BSD loopback), capture size 262144 bytes
18:58:14.745651 IP xiongchongdembp.63558 > xiongchongdembp.http-alt: Flags [S], seq 1854765658, win 65535, options [mss 16344,nop,wscale 6,nop,nop,TS val 98239951 ecr 0,sackOK,eol], length 0
18:58:14.745699 IP xiongchongdembp.http-alt > xiongchongdembp.63558: Flags [R.], seq 0, ack 1854765659, win 0, length 0
从tcpdump的抓包结果可以看出,客户端程序发出了握手信号[S],直接被回复了[R.]RST信号,可见,服务端没有监听端口时,系统内核会对想要连接该端口的客户端回复RST信号。
一端关闭了连接,另一端还在发送数据
再来看看客户端关闭后,对端继续发送消息的场景,这样的场景分为两种情况,一种事服务端发送keepalive消息,一种是服务端发送业务字节数据。
客户端关闭,服务端发送keepalive
先来看看发送keepalive消息的场景,这次同样用tcpdump监听8080端口,不过为了更清晰的分析这次抓包文件,我将tcpdump的抓包文件存到了本地,之后wireshark再去打开,tcpdump抓包命名如下:
sudo tcpdump -i lo0 port 8080 -w lo.pcap
接着,用文章开头准备的代码段启动服务端,客户端,注意,此时服务端仅仅是打印了收到的消息,并没有对客户端进行回应,而客户端进程也是在发送消息后就被销毁了。来看看此时的抓包文件

当客户端进程关闭时,即使没有显示的调用close方法,内核也会帮助我们关闭连接,发送fin信号,此时客户端连接会进入fin wait1状态,在这个状态下,客户端还是可以正常回应keep alive消息,不过超过fin wait1状态的超时时间时,则会被系统内核自动回收掉,此时再发送keepalive消息就会回复RST 这个超时时间在linux内核上可以通过下面这个文件进行修改,默认是1min。
root@ecs-295280:~# cat /proc/sys/net/ipv4/tcp_fin_timeout
60
客户端关闭,服务端发送消息
接着来看下,服务端在客户端关闭(无论是主动调用close方法还是进程结束连接被内核关闭都一样)的场景下主动发送消息触发RST的场景。
此时需要修改下目前服务端的代码了。
func main() {
listen, err := net.Listen("tcp", ":8080")
if err != nil {
log.Fatal(err)
}
go func() {
for {
conn, err := listen.Accept()
if err != nil {
log.Fatal(err)
}
buf := make([]byte, 1024)
n, err := conn.Read(buf)
if err != nil {
log.Fatal(err)
}
fmt.Println(string(buf[:n]))
time.Sleep(time.Second)
_, err = conn.Write([]byte("receive msg"))
if err != nil {
fmt.Println(err)
}
}()
ch := make(chan int)
<-ch
}
这次的服务端不仅打印了收到的消息,还将消息发送给了客户端,为了确保服务端发送消息时,客户端已经关闭了,我还在服务端收到消息时故意停留了1s再发送消息。
此时用tcpdump抓包如下:

可以看到在连接关闭后,还往连接发送消息是会触发RST信号的。
当服务端缓冲区还有数据时,服务端关闭链接
服务端读缓冲区还有数据
接着来看下服务端读缓冲区有数据的情况下,服务端关闭连接的场景,这个场景服务端会直接发送RST信号,我们对客户端代码进行修改,让它发送完消息进程等待状态,防止进程结束。
func main() {
conn, err := net.Dial("tcp", "192.168.2.3:8080")
if err != nil {
log.Fatal(err)
}
_, err = conn.Write([]byte("hello world"))
if err != nil {
log.Fatal(err)
}
time.Sleep(time.Hour)
}
然后对服务端代码进行修改,握手成功后等待2s来确保客户端发送的消息到达,然后关闭连接。
func main() {
listen, err := net.Listen("tcp", ":8080")
if err != nil {
log.Fatal(err)
}
go func() {
for {
conn, err := listen.Accept()
if err != nil {
log.Fatal(err)
}
time.Sleep(2 * time.Second)
conn.Close()
}
}()
ch := make(chan int)
<-ch
}
对这个场景的抓包如下:

可见,服务端在关闭连接时直接发送了RST信号。
服务端写缓冲区还有数据
再来看下最后一个RST信号触发的场景,默认情况下,当写缓冲区还有数据时,如果调用close方法,会将写缓冲区的发送到对端然后再发送fin信号,但是如果设置了linger属性,那么情况会变得不同。
// SetLinger sets the behavior of Close on a connection which still// has data waiting to be sent or to be acknowledged.
//
// If sec < 0 (the default), the operating system finishes sending the
// data in the background.
//
// If sec == 0, the operating system discards any unsent or
// unacknowledged data.
//
// If sec > 0, the data is sent in the background as with sec < 0. On
// some operating systems after sec seconds have elapsed any remaining
// unsent data may be discarded.
func (c *TCPConn) SetLinger(sec int) error
如果写缓冲区还有数据或者发送了数据但是没有被ack,当设置linger为0时,进行close,会直接将写缓冲区数据丢弃并且往对端发送RST信号。
为了验证这种场景,我们将服务端的代码再改动下,将连接linger属性设置为0,并且在写入一段数据后马上关闭。
func main() {
listen, err := net.Listen("tcp", ":8080")
if err != nil {
log.Fatal(err)
}
go func() {
for {
conn, err := listen.Accept()
if err != nil {
log.Fatal(err)
}
buf := make([]byte, 1024)
n, err := conn.Read(buf)
if err != nil {
log.Fatal(err)
}
conn.(*net.TCPConn).SetLinger(0)
fmt.Println(string(buf[:n]))
_, err = conn.Write([]byte("receive msg"))
if err != nil {
fmt.Println(err)
}
conn.Close()
}()
ch := make(chan int)
<-ch
}
客户端程序仍然保持在发送消息后,睡眠1小时的状态,防止进程结束
func main() {
conn, err := net.Dial("tcp", "192.168.2.3:8080")
if err != nil {
log.Fatal(err)
}
_, err = conn.Write([]byte("hello world"))
if err != nil {
log.Fatal(err)
}
time.Sleep(time.Hour)
}
对这种场景的抓包如下:

抓包分析RST报文的更多相关文章
- ipv6地址抓包分析
拓扑图: 因为多路由,所以采用ospf配置将路由实现互通,从而进行抓包 ospf配置以R1为例 查看R4路由表 做完进行ping通测试 R4pingR3 R4pingR5 进行抓包分析 128报文 1 ...
- 计算机网络-DHCP协议抓包分析总结
前置问题:什么是(网络)协议? 网络协议为计算机网络中进行数据交换而建立的规则.标准或约定的集合. 而且: 一个网络协议至少包括三要素: 语法:用来规定信息格式;数据及控制信息的格式.编码及信号电平等 ...
- Wireshark抓包分析HTTPS与HTTP报文的差异
一.什么是HTTPS: HTTPS(Secure Hypertext Transfer Protocol)安全超文本传输协议 它是一个安全通信通道,它基于HTTP开发,用于在客户计算机和服务器之间交换 ...
- nmap参数原理抓包分析
nmap参数原理抓包分析 实验环境: Nmap7.70 实验步骤: 1.主机发现 2.端口扫描 3.服务版本探测 一.主机发现 主机发现,如果主机活跃,扫描1000个常用的tcp端口 1.Nmap i ...
- Wireshark抓包分析TCP 3次握手、4次挥手过程
Wireshark简介 更多有关Wireshark的教程.软件下载等,请见:http://www.52im.net/thread-259-1-1.html,本文只作简要介绍. 1Wireshark 是 ...
- 转:tcpdump抓包分析(强烈推荐)
转自:https://mp.weixin.qq.com/s?__biz=MzAxODI5ODMwOA==&mid=2666539134&idx=1&sn=5166f0aac71 ...
- WireShark抓包分析(二)
简述:本文介绍了抓包数据含义,有TCP报文.Http报文.DNS报文.如有错误,欢迎指正. 1.TCP报文 TCP:(TCP是面向连接的通信协议,通过三次握手建立连接,通讯完成时要拆除连接,由于TCP ...
- 聊聊tcpdump与Wireshark抓包分析
1 起因# 前段时间,一直在调线上的一个问题:线上应用接受POST请求,请求body中的参数获取不全,存在丢失的状况.这个问题是偶发性的,大概发生的几率为5%-10%左右,这个概率已经相当高了.在排查 ...
- 抓包分析TCP的三次握手和四次握手
问题描写叙述: 在上一篇<怎样对Android设备进行抓包>中提到了,server的开发者须要我bug重现然后提供抓包给他们分析.所以抓好包自己也试着分析了一下.发现里面全是一些TCP协议 ...
- 使用wireshark抓包分析-抓包实用技巧
目录 使用wireshark抓包分析-抓包实用技巧 前言 自定义捕获条件 输入配置 输出配置 命令行抓包 抓取多个接口 抓包分析 批量分析 合并包 结论 参考文献 使用wireshark抓包分析-抓包 ...
随机推荐
- 方差分析2——双因素方差分析(R语言)
双因素方差分析(Double factor variance analysis) 有两种类型:一个是无交互作用的双因素方差分析,它假定因素A和因素B的效应之间是相互独立的,不存在相互关系:另一个是有交 ...
- 对偶问题影子价格求解—R实现
table { margin: auto } 线性规划的对偶问题 线性规划对偶问题概述 例1:某厂生产A,B, C三种产品,每种产品的单位利润分别为12,18和15,资源消耗如下表,求总利润最大的生产 ...
- sorted、返回函数、匿名函数、装饰器、偏函数
1.sorted()排序方法,它可已经一个列表按照升序排序,也可以按照反序排序 1)如果要进行反序排序时,需要在函数里面设置reverse = True 2)sorted是一个高阶函数,它接受函数作为 ...
- Semantic Kernel 入门系列:🔥Kernel 内核和🧂Skills 技能
理解了LLM的作用之后,如何才能构造出与LLM相结合的应用程序呢? 首先我们需要把LLM AI的能力和原生代码的能力区分开来,在Semantic Kernel(以下简称SK),LLM的能力称为 sem ...
- Kubernetes客户端认证——基于CA证书的双向认证方式
1.Kubernetes 认证方式 Kubernetes集群的访问权限控制由API Server负责,API Server的访问权限控制由身份验证(Authentication).授权(Authori ...
- 【Java SE】集合
1.java集合框架 使用Array存储对象有一定的弊端.java集合就是一种容器,动态地存储多个对象,存储主要是内存层面的存储,不涉及到持久化的存储(txt,avi,数据库). ①一旦初始化好,数组 ...
- Go语言:两种常见的并发模型
Go语言:两种常见的并发模型 在并发编程中,须要精确地控制对共享资源的访问,Go语言将共享的值通过通道传递 并发版"Hello World" 使用goroutine来打印" ...
- odoo wizard界面显示带复选框列表及勾选数据获取
实践环境 Odoo 14.0-20221212 (Community Edition) 需求描述 如下图(非实际项目界面截图,仅用于介绍本文主题),打开记录详情页(form视图),点击某个按钮(图中的 ...
- R的基本用法2
title: "Lectures" author: '01' date: "2022-09-23" output: pdf_document knitr::op ...
- TypeScript 学习笔记 — 数组常见的类型转换操作记录(十四)
获取长度 length type LengthOfTuple<T extends any[]> = T["length"]; type A = LengthOfTupl ...