文本识别分类系统python,基于深度学习的CNN卷积神经网络算法
一、介绍
文本分类系统,使用Python作为主要开发语言,通过TensorFlow搭建CNN卷积神经网络对十余种不同种类的文本数据集进行训练,最后得到一个h5格式的本地模型文件,然后采用Django开发网页界面,实现用户在界面中输入一段文字,识别其所属的文本种类。
在我们的日常生活和工作中,文本数据无处不在。它们来自各种来源,包括社交媒体、新闻文章、客户反馈、科研论文等。随着大数据和人工智能技术的不断发展,如何从庞大的文本数据中提取有用的信息,识别文本的种类,成为了当前数据处理领域的一个热门课题。我们很高兴向大家介绍一个全新的文本分类系统,它将深度学习技术、Python语言与网页应用开发融为一体,以用户友好的方式提供精确的文本分类服务。
二、效果展示




三、演示视频+代码
视频+代码:https://www.yuque.com/ziwu/yygu3z/dm2c902i8cckeayy
四、主要功能
这个系统的核心是一个基于卷积神经网络(CNN)的深度学习模型,通过TensorFlow框架搭建而成。我们知道,CNN是一种强大的模型,最初用于图像识别,但近年来在自然语言处理领域也展现了惊人的性能。我们的系统训练了一个CNN模型,通过对十余种不同种类的文本数据集进行学习,最后得到了一个h5格式的本地模型文件,它可以准确地识别输入文本的种类。
我们选择Python作为主要的开发语言,不仅因为Python的简洁、易学和丰富的开源库,更因为Python在数据科学和机器学习领域的广泛应用。使用Python,我们能更高效地开发和维护系统,同时也能让更多的开发者参与到我们的项目中来。
为了让用户能更方便地使用我们的文本分类系统,我们利用Django开发了一个网页界面。Django是一款开源的Web开发框架,能够帮助我们快速构建高质量的Web应用。在我们的系统中,用户可以在界面中输入一段文字,系统会立即返回该段文字的分类结果。无论你是数据科学家需要处理大量文本数据,还是一位普通用户想要了解你的文本可能属于哪个类别,我们的系统都能为你提供方便、快捷的服务。
通过文本分类系统不仅能够提供精确的分类结果,还具有极高的可扩展性。我们的系统设计师希望这个系统能适应未来的需求,因此在设计时充分考虑了模块化和组件化。这意味着我们的系统可以轻松地添加新的文本种类,或者用新的模型替换现有的模型。这样,无论未来的需求如何变化,我们的系统都能轻松应对。
综上所述,这个全新的文本分类系统是一个将深度学习技术、Python语言和Web应用开发结合在一起的高级工具。它不仅能帮助我们处理和理解海量的文本数据,也为我们打开了新的可能性。如果你有处理文本数据的需求,或者对新的技术感兴趣,欢迎来试用我们的系统。我们相信,你会发现它是一个强大而有用的工具。
五、示例代码
这是一个基本的示例,描述了如何使用Python和TensorFlow训练一个CNN模型进行文本分类,并使用Django创建一个网页应用来使用这个模型。
- 使用TensorFlow训练一个CNN模型:
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
# 假设我们有一些训练数据
texts = [...] # 输入文本数据
labels = [...] # 输入文本对应的类别
# 设置词汇表大小和序列长度
vocab_size = 10000
sequence_length = 100
# 使用Tokenizer进行文本预处理
tokenizer = Tokenizer(num_words=vocab_size)
tokenizer.fit_on_texts(texts)
sequences = tokenizer.texts_to_sequences(texts)
data = pad_sequences(sequences, maxlen=sequence_length)
# 创建CNN模型
model = Sequential()
model.add(Embedding(vocab_size, 128, input_length=sequence_length))
model.add(Conv1D(128, 5, activation='relu'))
model.add(GlobalMaxPooling1D())
model.add(Dense(10, activation='softmax')) # 假设我们有10个文本类别
# 编译并训练模型
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(data, labels, epochs=10, validation_split=0.2)
# 保存模型
model.save('text_classification_model.h5')
- 使用Django创建一个Web应用:
首先,你需要在你的Django项目中创建一个新的app。然后,在views.py文件中,你可以加载你的模型并创建一个视图来处理用户的输入。
from django.shortcuts import render
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.sequence import pad_sequences
# 加载模型
model = load_model('text_classification_model.h5')
def classify_text(request):
if request.method == 'POST':
text = request.POST['text']
# 对文本进行预处理
sequences = tokenizer.texts_to_sequences([text])
data = pad_sequences(sequences, maxlen=sequence_length)
# 预测文本类别
prediction = model.predict(data)
label = prediction.argmax(axis=-1)
return render(request, 'classification_result.html', {'label': label})
return render(request, 'classify_text.html')
在这个视图中,我们首先检查请求是否是POST请求。如果是,我们从请求中获取用户输入的文本,对其进行预处理,并使用我们的模型进行预测。最后,我们返回一个页面,显示预测的文本类别。
然后,你需要在urls.py文件中添加一个URL模式,以便用户可以访问这个视图:
from django.urls import path
from . import views
urlpatterns = [
path('classify-text/', views.classify_text, name='classify_text'),
]
文本识别分类系统python,基于深度学习的CNN卷积神经网络算法的更多相关文章
- day-16 CNN卷积神经网络算法之Max pooling池化操作学习
利用CNN卷积神经网络进行训练时,进行完卷积运算,还需要接着进行Max pooling池化操作,目的是在尽量不丢失图像特征前期下,对图像进行downsampling. 首先看下max pooling的 ...
- 《Python深度学习》《卷积神经网络的可视化》精读
对于大多数深度学习模型,模型学到的表示都难以用人类可以理解的方式提取和呈现.但对于卷积神经网络来说,我们可以很容易第提取模型学习到的表示形式,并以此加深对卷积神经网络模型运作原理的理解. 这篇文章的内 ...
- 【深度学习系列】卷积神经网络CNN原理详解(一)——基本原理
上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可 ...
- 深度学习笔记 (一) 卷积神经网络基础 (Foundation of Convolutional Neural Networks)
一.卷积 卷积神经网络(Convolutional Neural Networks)是一种在空间上共享参数的神经网络.使用数层卷积,而不是数层的矩阵相乘.在图像的处理过程中,每一张图片都可以看成一张“ ...
- SIGAI深度学习第九集 卷积神经网络3
讲授卷积神经网络面临的挑战包括梯度消失.退化问题,和改进方法包括卷积层.池化层的改进.激活函数.损失函数.网络结构的改 进.残差网络.全卷机网络.多尺度融合.批量归一化等 大纲: 面临的挑战梯度消失问 ...
- 基于深度学习的人脸性别识别系统(含UI界面,Python代码)
摘要:人脸性别识别是人脸识别领域的一个热门方向,本文详细介绍基于深度学习的人脸性别识别系统,在介绍算法原理的同时,给出Python的实现代码以及PyQt的UI界面.在界面中可以选择人脸图片.视频进行检 ...
- 基于深度学习的车型识别系统(Python+清新界面+数据集)
摘要:基于深度学习的车型识别系统用于识别不同类型的车辆,应用YOLO V5算法根据不同尺寸大小区分和检测车辆,并统计各类型数量以辅助智能交通管理.本文详细介绍车型识别系统,在介绍算法原理的同时,给出P ...
- 基于深度学习的智能PCB板缺陷检测系统(Python+清新界面+数据集)
摘要:智能PCB板缺陷检测系统用于智能检测工业印刷电路板(PCB)常见缺陷,自动化标注.记录和保存缺陷位置和类型,以辅助电路板的质检.本文详细介绍智能PCB板缺陷检测系统,在介绍算法原理的同时,给出P ...
- 基于深度学习的人脸识别系统(Caffe+OpenCV+Dlib)【三】VGG网络进行特征提取
前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...
- 基于深度学习的人脸识别系统(Caffe+OpenCV+Dlib)【一】如何配置caffe属性表
前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...
随机推荐
- 被吐槽 GitHub仓 库太大,直接 600M 瘦身到 6M,这下舒服了
大家好,我是小富- 前言 忙里偷闲学习了点技术写了点demo代码,打算提交到我那 2000Star 的Github仓库上,居然发现有5个Issues,最近的一条日期已经是2022/8/1了,以前我还真 ...
- DG:三种模式切换
应用归档日志方式进行数据同步 SQL> alter system set log_archive_dest_2='SERVICE=standby arch noaffirm valid_for= ...
- 【Spring5】AOP
3 AOP 面向切面编程,利用AOP可以对业务的各个逻辑进行隔离,从而使得业务逻辑各部分的耦合度之间降低,提高程序的可重用性,同时提高开发的效率. 目的:不通过修改源代码,在主干功能上增加新功能 AO ...
- 05-打包样式资源(编写webpack配置文件)
/** * webpack.config.js webpack的配置文件 * 作用:指示 webpack 干哪些活(当你运行 webpack 指令时,会加载里面的配置) * * 所有构件工具都是基于n ...
- Python_11 类的方法
一.查缺补漏 1. 实例方法必须用类实例化对象()来调用,用类来调用时会执行,但是self中不是实例化类地址而是传的字符串 二.类中的方法 1. 实例方法 1. 定义在类里面的普通方法(函数) 2. ...
- Gateway同时使用断言跟过滤器查询数据库报了这个错误怎么解决?
DynamicServerListLoadBalancer for client shop-product-sentinel initialized: DynamicServerListLoadBal ...
- es6 新增 set 和 map数据结构以及应用场景
https://www.cnblogs.com/sexintercourse/p/12269580.html Set数据容器,这是一个能够存储无重复值的有序列表. 1. 创建集合 set let se ...
- Godot 4.0 文件读取(C#)
搞半天才弄明白Godot文件操作. Godot的文档总是试图让我使用自定义Resource来支持文件操作,但是我只需要读取纯文本. 读取纯文本 读取纯文本的方式如下: //Godot.FileAcce ...
- ChatGPT Plugin 插件开发:基于 ASP.NET Core Minimal API
前言 这是一篇ChatGPT插件开发教程,描述如何使用 ASP.NET Core Minimal API 开发 ChatGPT 插件,以最简单的 Todo List 指导示例作为入门教程. 这个Tod ...
- 京东APP百亿级商品与车关系数据检索实践
导读 本文主要讲解了京东百亿级商品车型适配数据存储结构设计以及怎样实现适配接口的高性能查询.通过京东百亿级数据缓存架构设计实践案例,简单剖析了jimdb的位图(bitmap)函数和lua脚本应用在高性 ...