一、介绍

文本分类系统,使用Python作为主要开发语言,通过TensorFlow搭建CNN卷积神经网络对十余种不同种类的文本数据集进行训练,最后得到一个h5格式的本地模型文件,然后采用Django开发网页界面,实现用户在界面中输入一段文字,识别其所属的文本种类。

在我们的日常生活和工作中,文本数据无处不在。它们来自各种来源,包括社交媒体、新闻文章、客户反馈、科研论文等。随着大数据和人工智能技术的不断发展,如何从庞大的文本数据中提取有用的信息,识别文本的种类,成为了当前数据处理领域的一个热门课题。我们很高兴向大家介绍一个全新的文本分类系统,它将深度学习技术、Python语言与网页应用开发融为一体,以用户友好的方式提供精确的文本分类服务。

二、效果展示







三、演示视频+代码

视频+代码:https://www.yuque.com/ziwu/yygu3z/dm2c902i8cckeayy

四、主要功能

这个系统的核心是一个基于卷积神经网络(CNN)的深度学习模型,通过TensorFlow框架搭建而成。我们知道,CNN是一种强大的模型,最初用于图像识别,但近年来在自然语言处理领域也展现了惊人的性能。我们的系统训练了一个CNN模型,通过对十余种不同种类的文本数据集进行学习,最后得到了一个h5格式的本地模型文件,它可以准确地识别输入文本的种类。

我们选择Python作为主要的开发语言,不仅因为Python的简洁、易学和丰富的开源库,更因为Python在数据科学和机器学习领域的广泛应用。使用Python,我们能更高效地开发和维护系统,同时也能让更多的开发者参与到我们的项目中来。

为了让用户能更方便地使用我们的文本分类系统,我们利用Django开发了一个网页界面。Django是一款开源的Web开发框架,能够帮助我们快速构建高质量的Web应用。在我们的系统中,用户可以在界面中输入一段文字,系统会立即返回该段文字的分类结果。无论你是数据科学家需要处理大量文本数据,还是一位普通用户想要了解你的文本可能属于哪个类别,我们的系统都能为你提供方便、快捷的服务。

通过文本分类系统不仅能够提供精确的分类结果,还具有极高的可扩展性。我们的系统设计师希望这个系统能适应未来的需求,因此在设计时充分考虑了模块化和组件化。这意味着我们的系统可以轻松地添加新的文本种类,或者用新的模型替换现有的模型。这样,无论未来的需求如何变化,我们的系统都能轻松应对。

综上所述,这个全新的文本分类系统是一个将深度学习技术、Python语言和Web应用开发结合在一起的高级工具。它不仅能帮助我们处理和理解海量的文本数据,也为我们打开了新的可能性。如果你有处理文本数据的需求,或者对新的技术感兴趣,欢迎来试用我们的系统。我们相信,你会发现它是一个强大而有用的工具。

五、示例代码

这是一个基本的示例,描述了如何使用Python和TensorFlow训练一个CNN模型进行文本分类,并使用Django创建一个网页应用来使用这个模型。

  1. 使用TensorFlow训练一个CNN模型:
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences # 假设我们有一些训练数据
texts = [...] # 输入文本数据
labels = [...] # 输入文本对应的类别 # 设置词汇表大小和序列长度
vocab_size = 10000
sequence_length = 100 # 使用Tokenizer进行文本预处理
tokenizer = Tokenizer(num_words=vocab_size)
tokenizer.fit_on_texts(texts)
sequences = tokenizer.texts_to_sequences(texts)
data = pad_sequences(sequences, maxlen=sequence_length) # 创建CNN模型
model = Sequential()
model.add(Embedding(vocab_size, 128, input_length=sequence_length))
model.add(Conv1D(128, 5, activation='relu'))
model.add(GlobalMaxPooling1D())
model.add(Dense(10, activation='softmax')) # 假设我们有10个文本类别 # 编译并训练模型
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(data, labels, epochs=10, validation_split=0.2) # 保存模型
model.save('text_classification_model.h5')
  1. 使用Django创建一个Web应用:

    首先,你需要在你的Django项目中创建一个新的app。然后,在views.py文件中,你可以加载你的模型并创建一个视图来处理用户的输入。
from django.shortcuts import render
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.sequence import pad_sequences # 加载模型
model = load_model('text_classification_model.h5') def classify_text(request):
if request.method == 'POST':
text = request.POST['text'] # 对文本进行预处理
sequences = tokenizer.texts_to_sequences([text])
data = pad_sequences(sequences, maxlen=sequence_length) # 预测文本类别
prediction = model.predict(data)
label = prediction.argmax(axis=-1) return render(request, 'classification_result.html', {'label': label}) return render(request, 'classify_text.html')

在这个视图中,我们首先检查请求是否是POST请求。如果是,我们从请求中获取用户输入的文本,对其进行预处理,并使用我们的模型进行预测。最后,我们返回一个页面,显示预测的文本类别。

然后,你需要在urls.py文件中添加一个URL模式,以便用户可以访问这个视图:

from django.urls import path
from . import views urlpatterns = [
path('classify-text/', views.classify_text, name='classify_text'),
]

文本识别分类系统python,基于深度学习的CNN卷积神经网络算法的更多相关文章

  1. day-16 CNN卷积神经网络算法之Max pooling池化操作学习

    利用CNN卷积神经网络进行训练时,进行完卷积运算,还需要接着进行Max pooling池化操作,目的是在尽量不丢失图像特征前期下,对图像进行downsampling. 首先看下max pooling的 ...

  2. 《Python深度学习》《卷积神经网络的可视化》精读

    对于大多数深度学习模型,模型学到的表示都难以用人类可以理解的方式提取和呈现.但对于卷积神经网络来说,我们可以很容易第提取模型学习到的表示形式,并以此加深对卷积神经网络模型运作原理的理解. 这篇文章的内 ...

  3. 【深度学习系列】卷积神经网络CNN原理详解(一)——基本原理

    上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可 ...

  4. 深度学习笔记 (一) 卷积神经网络基础 (Foundation of Convolutional Neural Networks)

    一.卷积 卷积神经网络(Convolutional Neural Networks)是一种在空间上共享参数的神经网络.使用数层卷积,而不是数层的矩阵相乘.在图像的处理过程中,每一张图片都可以看成一张“ ...

  5. SIGAI深度学习第九集 卷积神经网络3

    讲授卷积神经网络面临的挑战包括梯度消失.退化问题,和改进方法包括卷积层.池化层的改进.激活函数.损失函数.网络结构的改 进.残差网络.全卷机网络.多尺度融合.批量归一化等 大纲: 面临的挑战梯度消失问 ...

  6. 基于深度学习的人脸性别识别系统(含UI界面,Python代码)

    摘要:人脸性别识别是人脸识别领域的一个热门方向,本文详细介绍基于深度学习的人脸性别识别系统,在介绍算法原理的同时,给出Python的实现代码以及PyQt的UI界面.在界面中可以选择人脸图片.视频进行检 ...

  7. 基于深度学习的车型识别系统(Python+清新界面+数据集)

    摘要:基于深度学习的车型识别系统用于识别不同类型的车辆,应用YOLO V5算法根据不同尺寸大小区分和检测车辆,并统计各类型数量以辅助智能交通管理.本文详细介绍车型识别系统,在介绍算法原理的同时,给出P ...

  8. 基于深度学习的智能PCB板缺陷检测系统(Python+清新界面+数据集)

    摘要:智能PCB板缺陷检测系统用于智能检测工业印刷电路板(PCB)常见缺陷,自动化标注.记录和保存缺陷位置和类型,以辅助电路板的质检.本文详细介绍智能PCB板缺陷检测系统,在介绍算法原理的同时,给出P ...

  9. 基于深度学习的人脸识别系统(Caffe+OpenCV+Dlib)【三】VGG网络进行特征提取

    前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...

  10. 基于深度学习的人脸识别系统(Caffe+OpenCV+Dlib)【一】如何配置caffe属性表

    前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...

随机推荐

  1. AllenBradley罗克韦尔CIP通信协议介绍 C# AllenBradley(CIP)读写操作PLC数据 C#罗克韦尔(CIP)PLC通信 全开源下载

    罗克韦尔CIP通信协议(Control and Information Protocol)是一种面向对象的通信协议,它是用于工业自动化领域的数据通信协议.CIP协议可以在不同厂商.不同类型的自动化设备 ...

  2. day02-搭建微服务基础环境01

    搭建微服务基础环境01 1.创建父工程,用于聚合其他微服务模块 1.1创建父项目 说明:我们先创建一个父项目,该父项目会去管理多个微服务模块(module),如下: (1)File-New-Proje ...

  3. [Windows/Linux]Linux下的正斜杠"/"和"\"的区别 [转载]

    执行某一条Linux命令时,遇到了此问题,甚为不解.[文由] 本篇属于全文转载自: Linux下的正斜杠"/"和""的区别 - 博客园 >>> ...

  4. python选出一定数量的随机文件到某个文件夹

    import os import random import shutil def move_file(target_path, save_path, number): file_list = os. ...

  5. 【前端基础】(二)promise异步编排

    ☆promise异步编排 javascript众所周知只能支持单线程,因此各种网络请求必须异步发送,导致可能会出现很多问题,比如如下我们有三个文件,现在要求进行如下请求: ① 查出当前用户信息 ② 根 ...

  6. TF-IDF定义及实现

    TF-IDF定义及实现 定义 ​ TF-IDF的英文全称是:Term Frequency - Inverse Document Frequency,中文名称词频-逆文档频率,常用于文本挖掘,资讯检索等 ...

  7. switch case 穿透 示例

    public class SwitchCase { //判断输入的月份属于第几季度 public static void main(String[] args) { //随机获得 1-12个月份中的一 ...

  8. 20-优化配置介绍、HMR

    webpack性能优化 开发环境性能优化 生产环境性能优化 开发环境性能优化 优化打包构建速度 HMR 优化代码调试 source-map 生产环境性能优化 优化打包构建速度 oneOf babel缓 ...

  9. logstash增量同步mysql数据到es

    本篇本章地址:https://www.cnblogs.com/Thehorse/p/11601013.html 今天我们来讲一下logstash同步mysql数据到es 我认为呢,logstash是众 ...

  10. vivo 推送系统的容灾建设与实践

    作者:vivo 互联网服务器团队 - Yu Quan 本文介绍了推送系统容灾建设和关键技术方案,以及实践过程中的思考与挑战. 一.推送系统介绍 vivo推送平台是vivo公司向开发者提供的消息推送服务 ...