Linux设备模型:5、device和device driver
作者:wowo 发布于:2014-4-2 19:28 分类:统一设备模型
http://www.wowotech.net/device_model/device_and_driver.html
前言
device和device driver是Linux驱动开发的基本概念。
Linux kernel的思路很简单:驱动开发,就是要开发指定的软件(driver)以驱动指定的设备,所以kernel就为设备和驱动它的driver定义了两个数据结构,分别是device和device_driver。
因此本文将会围绕这两个数据结构,介绍Linux设备模型的核心逻辑,包括:
- 设备及设备驱动在kernel中的抽象、使用和维护;
- 设备及设备驱动的注册、加载、初始化原理;
- 设备模型在实际驱动开发过程中的使用方法。
注:在介绍device和device_driver的过程中,会遇到很多额外的知识点,如Class、Bus、DMA、电源管理等等,这些知识点都很复杂,任何一个都可以作为一个单独的专题区阐述,因此本文不会深入解析它们,而会在后续的文章中专门描述。
核心数据结构
在阅读Linux内核源代码时,通过核心数据结构,即可理解某个模块60%以上的逻辑,设备模型部分尤为明显。
在include/linux/device.h中,Linux内核定义了设备模型中最重要的两个数据结构,struct device和struct device_driver。
struct device
/* include/linux/device.h, line 660 */
struct device {
struct device *parent;
struct device_private *p;
struct kobject kobj;
const char *init_name; /* initial name of the device */
const struct device_type *type;
struct mutex mutex; /* mutex to synchronize calls to
* its driver.
*/
struct bus_type *bus; /* type of bus device is on */
struct device_driver *driver; /* which driver has allocated this
device */
void *platform_data; /* Platform specific data, device
core doesn't touch it */
struct dev_pm_info power;
struct dev_pm_domain *pm_domain;
#ifdef CONFIG_PINCTRL
struct dev_pin_info *pins;
#endif
#ifdef CONFIG_NUMA
int numa_node; /* NUMA node this device is close to */
#endif
u64 *dma_mask; /* dma mask (if dma'able device) */
u64 coherent_dma_mask;/* Like dma_mask, but for
alloc_coherent mappings as
not all hardware supports
64 bit addresses for consistent
allocations such descriptors. */
struct device_dma_parameters *dma_parms;
struct list_head dma_pools; /* dma pools (if dma'ble) */
struct dma_coherent_mem *dma_mem; /* internal for coherent mem
override */
#ifdef CONFIG_CMA
struct cma *cma_area; /* contiguous memory area for dma
allocations */
#endif
/* arch specific additions */
struct dev_archdata archdata;
struct device_node *of_node; /* associated device tree node */
struct acpi_dev_node acpi_node; /* associated ACPI device node */
dev_t devt; /* dev_t, creates the sysfs "dev" */
u32 id; /* device instance */
spinlock_t devres_lock;
struct list_head devres_head;
struct klist_node knode_class;
struct class *class;
const struct attribute_group **groups; /* optional groups */
void (*release)(struct device *dev);
struct iommu_group *iommu_group;
};
device结构很复杂(不过linux内核的开发人员素质是很高的,该接口的注释写的非常详细,感兴趣的同学可以参考内核源代码),这里将会选一些对理解设备模型非常关键的字段进行说明。
parent,该设备的父设备,一般是该设备所从属的bus、controller等设备。
p,一个用于struct device的私有数据结构指针,该指针中会保存子设备链表、用于添加到bus/driver/prent等设备中的链表头等等,具体可查看源代码。
kobj,该数据结构对应的struct kobject。
init_name,该设备的名称。
注1:在设备模型中,名称是一个非常重要的变量,任何注册到内核中的设备,都必须有一个合法的名称,可以在初始化时给出,也可以由内核根据“bus name + device ID”的方式创造。
type,struct device_type结构是新版本内核新引入的一个结构,它和struct device关系,非常类似stuct kobj_type和struct kobject之间的关系,后续会再详细说明。
bus,该device属于哪个总线(后续会详细描述)。
driver,该device对应的device driver。
platform_data,一个指针,用于保存具体的平台相关的数据。具体的driver模块,可以将一些私有的数据,暂存在这里,需要使用的时候,再拿出来,因此设备模型并不关心该指针得实际含义。
power、pm_domain,电源管理相关的逻辑,后续会由电源管理专题讲解。
pins,"PINCTRL”功能,暂不描述。
numa_node,"NUMA”功能,暂不描述。
dma_mask~archdata,DMA相关的功能,暂不描述。
devt,dev_t是一个32位的整数,它由两个部分(Major和Minor)组成,在需要以设备节点的形式(字符设备和块设备)向用户空间提供接口的设备中,当作设备号使用。在这里,该变量主要用于在sys文件系统中,为每个具有设备号的device,创建/sys/dev/* 下的对应目录,如下:
root@android:/storage/sdcard0 #ls /sys/dev/char/1\:
1/ 1:11/ 1:13/ 1:14/ 1:2/ 1:3/ 1:5/ 1:7/ 1:8/ 1:9/
1|root@android:/storage/sdcard0 #ls /sys/dev/char/1:1
1/ 1:11/ 1:13/ 1:14/
root@android:/storage/sdcard0 # ls /sys/dev/char/1\:1
/sys/dev/char/1:1
class,该设备属于哪个class。
groups,该设备的默认attribute集合。将会在设备注册时自动在sysfs中创建对应的文件。
struct device_driver
/* include/linux/device.h, line 213 */
struct device_driver {
const char *name;
struct bus_type *bus;
struct module *owner;
const char *mod_name; /* used for built-in modules */
bool suppress_bind_attrs; /* disables bind/unbind via sysfs */
const struct of_device_id *of_match_table;
const struct acpi_device_id *acpi_match_table;
int (*probe) (struct device *dev);
int (*remove) (struct device *dev);
void (*shutdown) (struct device *dev);
int (*suspend) (struct device *dev, pm_message_t state);
int (*resume) (struct device *dev);
const struct attribute_group **groups;
const struct dev_pm_ops *pm;
struct driver_private *p;
};
device_driver就简单多了(在早期的内核版本中driver的数据结构为"struct driver”,不知道从哪个版本开始,就改成device_driver了):
name,该driver的名称。和device结构一样,该名称非常重要,后面会再详细说明。
bus,该driver所驱动设备的总线设备。为什么driver需要记录总线设备的指针呢?因为内核要保证在driver运行前,设备所依赖的总线能够正确初始化。
owner、mod_name,內核module相关的变量,暂不描述。
suppress_bind_attrs,是不在sysfs中启用bind和unbind attribute,如下:
root@android:/storage/sdcard0 # ls /sys/bus/platform/drivers/switch-gpio/
bind uevent unbind
在kernel中,bind/unbind是从用户空间手动的为driver绑定/解绑定指定的设备的机制。这种机制是在bus.c中完成的,后面会详细解释。
probe、remove,这两个接口函数用于实现driver逻辑的开始和结束。Driver是一段软件code,因此会有开始和结束两个代码逻辑,就像PC程序,会有一个main函数,main函数的开始就是开始,return的地方就是结束。而内核driver却有其特殊性:在设备模型的结构下,只有driver和device同时存在时,才需要开始执行driver的代码逻辑。这也是probe和remove两个接口名称的由来:检测到了设备和移除了设备(就是为热拔插起的!)。
shutdown、suspend、resume、pm,电源管理相关的内容,会在电源管理专题中详细说明。
groups,和struct device结构中的同名变量类似,driver也可以定义一些默认attribute,这样在将driver注册到内核中时,内核设备模型部分的代码(driver/base/driver.c)会自动将这些attribute添加到sysfs中。
p,driver core的私有数据指针,其它模块不能访问。
设备模型框架下驱动开发的基本步骤
在设备模型框架下,设备驱动的开发是一件很简单的事情,主要包括2个步骤:
步骤1:分配一个struct device类型的变量,填充必要的信息后,把它注册到内核中。
步骤2:分配一个struct device_driver类型的变量,填充必要的信息后,把它注册到内核中。
这两步完成后,内核会在合适的时机(后面会讲),调用struct device_driver变量中的probe、remove、suspend、resume等回调函数,从而触发或者终结设备驱动的执行。而所有的驱动程序逻辑,都会由这些回调函数实现,此时,驱动开发者眼中便不再有“设备模型”,转而只关心驱动本身的实现。
以上两个步骤的补充说明:
一般情况下,Linux驱动开发很少直接使用device和device_driver,因为内核在它们之上又封装了一层,如soc device、platform device等等,而这些层次提供的接口更为简单、易用(也正是因为这个原因,本文并不会过多涉及device、device_driver等模块的实现细节)。
内核提供很多struct device结构的操作接口(具体可以参考include/linux/device.h和drivers/base/core.c的代码),主要包括初始化(device_initialize)、注册到内核(device_register)、分配存储空间+初始化+注册到内核(device_create)等等,可以根据需要使用。
device和device_driver必须具备相同的名称,内核才能完成匹配操作,进而调用device_driver中的相应接口。这里的同名,作用范围是同一个bus下的所有device和device_driver。
device和device_driver必须挂载在一个bus之下,该bus可以是实际存在的,也可以是虚拟的。
driver开发者可以在struct device变量中,保存描述设备特征的信息,如寻址空间、依赖的GPIOs等,因为device指针会在执行probe等接口时传入,这时driver就可以根据这些信息,执行相应的逻辑操作了。
设备驱动probe的时机
所谓的"probe”,是指在Linux内核中,如果存在相同名称的device和device_driver(注:还存在其它方式,我们先不关注了),内核就会执行device_driver中的probe回调函数,而该函数就是所有driver的入口,可以执行诸如硬件设备初始化、字符设备注册、设备文件操作ops注册等动作("remove”是它的反操作,发生在device或者device_driver任何一方从内核注销时,其原理类似,就不再单独说明了)。
设备驱动prove的时机有如下几种(分为自动触发和手动触发):
- 将struct device类型的变量注册到内核中时自动触发(device_register,device_add,device_create_vargs,device_create)
- 将struct device_driver类型的变量注册到内核中时自动触发(driver_register)
- 手动查找同一bus下的所有device_driver,如果有和指定device同名的driver,执行probe操作(device_attach)
- 手动查找同一bus下的所有device,如果有和指定driver同名的device,执行probe操作(driver_attach)
- 自行调用driver的probe接口,并在该接口中将该driver绑定到某个device结构中----即设置dev->driver(device_bind_driver)
注2:probe动作实际是由bus模块(会在下一篇文章讲解)实现的,这不难理解:device和device_driver都是挂载在bus这根线上,因此只有bus最清楚应该为哪些device、哪些driver配对。
注3:每个bus都有一个drivers_autoprobe变量,用于控制是否在device或者driver注册时,自动probe。该变量默认为1(即自动probe),bus模块将它开放到sysfs中了,因而可在用户空间修改,进而控制probe行为。
其它杂项
device_attribute和driver_attribute
在"Linux设备模型(4)_sysfs”中,我们有讲到,大多数时候,attribute文件的读写数据流为:vfs---->sysfs---->kobject---->attibute---->kobj_type---->sysfs_ops---->xxx_attribute,其中kobj_type、sysfs_ops和xxx_attribute都是由包含kobject的上层数据结构实现。
Linux内核中关于该内容的例证到处都是,device也不无例外的提供了这种例子,如下:
/* driver/base/core.c, line 118 */
static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
char *buf)
{
struct device_attribute *dev_attr = to_dev_attr(attr);
struct device *dev = kobj_to_dev(kobj);
ssize_t ret = -EIO;
if (dev_attr->show)
ret = dev_attr->show(dev, dev_attr, buf);
if (ret >= (ssize_t)PAGE_SIZE) {
print_symbol("dev_attr_show: %s returned bad count\n",
(unsigned long)dev_attr->show);
}
return ret;
}
static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
const char *buf, size_t count)
{
struct device_attribute *dev_attr = to_dev_attr(attr);
struct device *dev = kobj_to_dev(kobj);
ssize_t ret = -EIO;
if (dev_attr->store)
ret = dev_attr->store(dev, dev_attr, buf, count);
return ret;
}
static const struct sysfs_ops dev_sysfs_ops = {
.show = dev_attr_show,
.store = dev_attr_store,
};
/* driver/base/core.c, line 243 */
static struct kobj_type device_ktype = {
.release = device_release,
.sysfs_ops = &dev_sysfs_ops,
.namespace = device_namespace,
};
/* include/linux/device.h, line 478 */
/* interface for exporting device attributes */
struct device_attribute {
struct attribute attr;
ssize_t (*show)(struct device *dev, struct device_attribute *attr,
char *buf);
ssize_t (*store)(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count);
};
至于driver的attribute,则要简单的多,其数据流为:vfs---->sysfs---->kobject---->attribute---->driver_attribute,如下:
/* include/linux/device.h, line 247 */
/* sysfs interface for exporting driver attributes */
struct driver_attribute {
struct attribute attr;
ssize_t (*show)(struct device_driver *driver, char *buf);
ssize_t (*store)(struct device_driver *driver, const char *buf,
size_t count);
};
#define DRIVER_ATTR(_name, _mode, _show, _store) \
struct driver_attribute driver_attr_##_name = \
__ATTR(_name, _mode, _show, _store)
device_type
device_type是内嵌在struct device结构中的一个数据结构,用于指明设备的类型,并提供一些额外的辅助功能。它的的形式如下:
/* include/linux/device.h, line 467 */
struct device_type {
const char *name;
const struct attribute_group **groups;
int (*uevent)(struct device *dev, struct kobj_uevent_env *env);
char *(*devnode)(struct device *dev, umode_t *mode,
kuid_t *uid, kgid_t *gid);
void (*release)(struct device *dev);
const struct dev_pm_ops *pm;
};
device_type的功能包括:
name表示该类型的名称,当该类型的设备添加到内核时,内核会发出"DEVTYPE=‘name’”类型的uevent,告知用户空间某个类型的设备available了
groups,该类型设备的公共attribute集合。设备注册时,会同时注册这些attribute。这就是面向对象中“继承”的概念
uevent,同理,所有相同类型的设备,会有一些共有的uevent需要发送,由该接口实现
devnode,devtmpfs有关的内容,暂不说明
release,如果device结构没有提供release接口,就要查询它所属的type是否提供。用于释放device变量所占的空间
root device
在sysfs中有这样一个目录:/sys/devices,系统中所有的设备,都归集在该目录下。有些设备,是通过device_register注册到Kernel并体现在/sys/devices/xxx/下。但有时候我们仅仅需要在/sys/devices/下注册一个目录,该目录不代表任何的实体设备,这时可以使用下面的接口:
/* include/linux/device.h, line 859 */
/*
* Root device objects for grouping under /sys/devices
*/
extern struct device *__root_device_register(const char *name,
struct module *owner);
/*
* This is a macro to avoid include problems with THIS_MODULE,
* just as per what is done for device_schedule_callback() above.
*/
#define root_device_register(name) \
__root_device_register(name, THIS_MODULE)
extern void root_device_unregister(struct device *root);
该接口会调用device_register函数,向内核中注册一个设备,但是(你也想到了),没必要注册与之对应的driver(顺便提一下,内核中有很多不需要driver的设备,这是之一)。
Linux设备模型:5、device和device driver的更多相关文章
- Linux设备模型(9)_device resource management ---devm申请空间【转】
转自:http://www.wowotech.net/linux_kenrel/device_resource_management.html . 前言 蜗蜗建议,每一个Linux驱动工程师,都能瞄一 ...
- Linux设备模型(总线、设备、驱动程序和类)
Linux设备驱动程序学习(13) -Linux设备模型(总线.设备.驱动程序和类)[转] 文章的例子和实验使用<LDD3>所配的lddbus模块(稍作修改). 提示:在学习这部分内容是一 ...
- Linux设备模型 学习总结
看LDD3中设备模型一章,觉得思维有些混乱.这里从整体的角度来理理思路.本文从四个方面来总结一些内容: 1.底层数据结构:kobject,kset.2.linux设备模型层次关系:bus_type,d ...
- Linux设备模型——设备驱动模型和sysfs文件系统解读
本文将对Linux系统中的sysfs进行简单的分析,要分析sysfs就必须分析内核的driver-model(驱动模型),两者是紧密联系的.在分析过程中,本文将以platform总线和spi主控制器的 ...
- Linux 设备模型浅析之 uevent 篇(2)
Linux 设备模型浅析之 uevent 篇 本文属本人原创,欢迎转载,转载请注明出处.由于个人的见识和能力有限,不可能面 面俱到,也可能存在谬误,敬请网友指出,本人的邮箱是 yzq.seen@gma ...
- linux设备模型:扩展篇
Linux设备模型组件:总线 一.定义:总线是不同IC器件之间相互通讯的通道;在计算机中,一个总线就是处理器与一个或多个不同外设之间的通讯通道;为了设备模型的目的,所有的设备都通过总线相互连接,甚至 ...
- Linux设备模型:基础篇
linux提供了新的设备模型:总线(bus).设备(device).驱动(driver).其中总线是处理器与设备之间通道,在设备模型中,所有的设备都通过总线相连:设备是对于一个设备的详细信息描述,驱动 ...
- Linux设备模型(总结)
转:http://www.360doc.com/content/11/1219/16/1299815_173418267.shtml 看了一段时间的驱动编程,从LDD3的hello wrod到后来的字 ...
- Linux设备模型(热插拔、mdev 与 firmware)【转】
转自:http://www.cnblogs.com/hnrainll/archive/2011/06/10/2077469.html 转自:http://blog.chinaunix.net/spac ...
- linux设备模型与内核中的面向对象思想
linux内核用C语言实现了C++面向对象的大部分特性:封装,继承,多态.在看内核的过程中,开始追寻其中的设计思想,封装.继承.多态.恰好今天又在看Linux设备模型,找了很多资料.总结如下: 1.l ...
随机推荐
- Dijkstra迪杰斯特拉求最短路和最短路的条数和各个点权值的最大值
作为一个城市的紧急救援队队长,你会得到一张你所在国家的特殊地图. 该地图显示了由一些道路连接的几个分散的城市. 地图上标出了每个城市的救援队伍数量以及任意两个城市之间每条道路的长度. 当其他城市接到紧 ...
- rails byebug
Gemfile里添加 gem 'byebug' bundle install 在要打断点的地方写 byebug byebug -h #帮助 c 放行,入下走 n 单行调适 q 退出进行 启动异步任务推 ...
- 在项目中使用UEditor碰到的几个问题
1.文本编辑器的下拉框无法使用.即选择字号字体的下拉选择框无法使用. 通过调试,发现不是编辑器的下拉框没有出来,而是下拉框显示在弹出框的底部,猜测是否和z-index属性有关. 产生这个问题的原因是文 ...
- 搭建一套完整的ELK系统
ELK日志收集系统介绍 一 简单介绍 ELK部署搭建有很多成型的方案,这里推荐一种比较中规中矩的方案,它整合了logstash比较消耗资源以及当服务端临时宕机的时候出现数据丢失的问题,主要由fi ...
- vue3:modal组件开发
项目环境 @vue/cli 4.5.8 最终效果 需求分析 显示/隐藏 点击遮罩层能否关闭 宽度和zIndex自定义 标题栏 -显示标题和关闭按钮 主体 底部 -内置取消和确定功能 前置知识 tele ...
- apache 的下载与配置
一,下载: 打开apache的官方网站,http://www.apache.org/ 拉到网站的最下面,如图所示: 点击HTTP Server链接,对 Apache httpd 2.4.43 Re ...
- Android Media Framework - 开篇
前言 Android Media是一块非常庞大的内容,上到APP的书写,中到播放器的实现.封装格式的了解,下到编解码组件的封装.VPU API的了解,每块内容的学习都需要我们下很大的功夫.此外,我们还 ...
- Android OpenMAX(五)高通OMX Core实现
上一节了解了OMX Core提供的内容,这一节我们看看高通OMX Core是如何实现的.本节代码参考自: omx_core_cmp.cpp registry_table_android.c qc_om ...
- Android 12(S) MultiMedia Learning(一)开篇
这个系列将会作为自己学习android多媒体的笔记,如果有错误请帮忙指正. 本系列的学习均基于Android 12(S),代码来源:http://aospxref.com/
- Android 12(S) MultiMedia(十二)MediaCodecList & IOmxStore
这节来了解下MediaCodecList相关代码路径: frameworks/av/media/libstagefright/MediaCodecList.cpp frameworks/av/medi ...