参考代码:

https://www.cnblogs.com/devilmaycry812839668/p/14971668.html

dataset_sink_mode=True  时,我们可以理解是把数据进行部分的缓存到计算设备上,那么dataset_sink_mode为False和True时对性能影响大吗???

实际代码:

dataset_sink_mode=False 时:

#!/usr/bin python
# encoding:UTF-8 """" 对输入的超参数进行处理 """
import os
import argparse """ 设置运行的背景context """
from mindspore import context """ 对数据集进行预处理 """
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.vision.c_transforms as CV
from mindspore.dataset.vision import Inter
from mindspore import dtype as mstype """ 构建神经网络 """
import mindspore.nn as nn
from mindspore.common.initializer import Normal """ 训练时对模型参数的保存 """
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig """ 导入模型训练需要的库 """
from mindspore.nn import Accuracy
from mindspore.train.callback import LossMonitor
from mindspore import Model parser = argparse.ArgumentParser(description='MindSpore LeNet Example')
parser.add_argument('--device_target', type=str, default="CPU", choices=['Ascend', 'GPU', 'CPU']) args = parser.parse_known_args()[0] # 为mindspore设置运行背景context
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) def create_dataset(data_path, batch_size=32, repeat_size=1,
num_parallel_workers=1):
# 定义数据集
mnist_ds = ds.MnistDataset(data_path)
resize_height, resize_width = 32, 32
rescale = 1.0 / 255.0
shift = 0.0
rescale_nml = 1 / 0.3081
shift_nml = -1 * 0.1307 / 0.3081 # 定义所需要操作的map映射
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR)
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
rescale_op = CV.Rescale(rescale, shift)
hwc2chw_op = CV.HWC2CHW()
type_cast_op = C.TypeCast(mstype.int32) # 使用map映射函数,将数据操作应用到数据集
mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers) # 进行shuffle、batch、repeat操作
buffer_size = 10000
mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size)
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
mnist_ds = mnist_ds.repeat(repeat_size) return mnist_ds class LeNet5(nn.Cell):
"""
Lenet网络结构
""" def __init__(self, num_class=10, num_channel=1):
super(LeNet5, self).__init__()
# 定义所需要的运算
self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid')
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02))
self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02))
self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02))
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten() def construct(self, x):
# 使用定义好的运算构建前向网络
x = self.conv1(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.conv2(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
return x # 实例化网络
net = LeNet5() # 定义损失函数
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') # 定义优化器
net_opt = nn.Momentum(net.trainable_params(), learning_rate=0.01, momentum=0.9) # 设置模型保存参数
# 每125steps保存一次模型参数,最多保留15个文件
config_ck = CheckpointConfig(save_checkpoint_steps=125, keep_checkpoint_max=15)
# 应用模型保存参数
ckpoint = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ck) def train_net(args, model, epoch_size, data_path, repeat_size, ckpoint_cb, sink_mode):
"""定义训练的方法"""
# 加载训练数据集
ds_train = create_dataset(os.path.join(data_path, "train"), 32, repeat_size)
model.train(epoch_size, ds_train, callbacks=[LossMonitor(1875)], dataset_sink_mode=sink_mode) def test_net(network, model, data_path):
"""定义验证的方法"""
ds_eval = create_dataset(os.path.join(data_path, "test"))
acc = model.eval(ds_eval, dataset_sink_mode=False)
print("{}".format(acc)) mnist_path = "./datasets/MNIST_Data"
train_epoch = 10
dataset_size = 1
model = Model(net, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
import time
a=time.time()
train_net(args, model, train_epoch, mnist_path, dataset_size, ckpoint, False)
b=time.time()
print(b-a)
#train_net(args, model, train_epoch, mnist_path, dataset_size, ckpoint, True)
#test_net(net, model, mnist_path)

运行时间:

108.28s

120.17s

119.88s

110.11s

108.42s

平均值:113.37s

dataset_sink_mode=True 时:

#!/usr/bin python
# encoding:UTF-8 """" 对输入的超参数进行处理 """
import os
import argparse """ 设置运行的背景context """
from mindspore import context """ 对数据集进行预处理 """
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.vision.c_transforms as CV
from mindspore.dataset.vision import Inter
from mindspore import dtype as mstype """ 构建神经网络 """
import mindspore.nn as nn
from mindspore.common.initializer import Normal """ 训练时对模型参数的保存 """
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig """ 导入模型训练需要的库 """
from mindspore.nn import Accuracy
from mindspore.train.callback import LossMonitor
from mindspore import Model parser = argparse.ArgumentParser(description='MindSpore LeNet Example')
parser.add_argument('--device_target', type=str, default="CPU", choices=['Ascend', 'GPU', 'CPU']) args = parser.parse_known_args()[0] # 为mindspore设置运行背景context
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) def create_dataset(data_path, batch_size=32, repeat_size=1,
num_parallel_workers=1):
# 定义数据集
mnist_ds = ds.MnistDataset(data_path)
resize_height, resize_width = 32, 32
rescale = 1.0 / 255.0
shift = 0.0
rescale_nml = 1 / 0.3081
shift_nml = -1 * 0.1307 / 0.3081 # 定义所需要操作的map映射
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR)
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
rescale_op = CV.Rescale(rescale, shift)
hwc2chw_op = CV.HWC2CHW()
type_cast_op = C.TypeCast(mstype.int32) # 使用map映射函数,将数据操作应用到数据集
mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers) # 进行shuffle、batch、repeat操作
buffer_size = 10000
mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size)
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
mnist_ds = mnist_ds.repeat(repeat_size) return mnist_ds class LeNet5(nn.Cell):
"""
Lenet网络结构
""" def __init__(self, num_class=10, num_channel=1):
super(LeNet5, self).__init__()
# 定义所需要的运算
self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid')
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02))
self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02))
self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02))
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten() def construct(self, x):
# 使用定义好的运算构建前向网络
x = self.conv1(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.conv2(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
return x # 实例化网络
net = LeNet5() # 定义损失函数
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') # 定义优化器
net_opt = nn.Momentum(net.trainable_params(), learning_rate=0.01, momentum=0.9) # 设置模型保存参数
# 每125steps保存一次模型参数,最多保留15个文件
config_ck = CheckpointConfig(save_checkpoint_steps=125, keep_checkpoint_max=15)
# 应用模型保存参数
ckpoint = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ck) def train_net(args, model, epoch_size, data_path, repeat_size, ckpoint_cb, sink_mode):
"""定义训练的方法"""
# 加载训练数据集
ds_train = create_dataset(os.path.join(data_path, "train"), 32, repeat_size)
model.train(epoch_size, ds_train, callbacks=[LossMonitor(1875)], dataset_sink_mode=sink_mode) def test_net(network, model, data_path):
"""定义验证的方法"""
ds_eval = create_dataset(os.path.join(data_path, "test"))
acc = model.eval(ds_eval, dataset_sink_mode=False)
print("{}".format(acc)) mnist_path = "./datasets/MNIST_Data"
train_epoch = 10
dataset_size = 1
model = Model(net, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
import time
a=time.time()
train_net(args, model, train_epoch, mnist_path, dataset_size, ckpoint, True)
b=time.time()
print(b-a)
#train_net(args, model, train_epoch, mnist_path, dataset_size, ckpoint, True)
#test_net(net, model, mnist_path)

运行时间:

108.94s

111.44s

114.04s

112.52s

108.29s

平均值:111.04s

可以看到,dataset_sink_mode=True  确实可以提高一些运算性能,但是看测试的结果也没有太多的提升,所以一般情况下这个dataset_sink_mode设置不太需要考虑,当然如果是实际的生产环境那种情况或许还是有一定区别的。

====================================================

本文实验环境为  MindSpore1.1  docker版本

宿主机:Ubuntu18.04系统

CPU:I7-8700

GPU:1060ti NVIDIA显卡

在 MindSpore 中 dataset_sink_mode 的设置对算法的性能有多少影响呢???的更多相关文章

  1. 关于网站高性能中磁盘cpu以及内存对网站性能的影响

    之前和同事聊天的时候,提到了这个硬件方面(包括内存,cpu,以及硬盘的存储选择),个人认为可以从这几个方面来提高底层硬件的性能,从而提高网站的整体吞吐量和速度. 一.主机: (1).CPU:决定处理的 ...

  2. mahout中kmeans算法和Canopy算法实现原理

    本文讲一下mahout中kmeans算法和Canopy算法实现原理. 一. Kmeans是一个很经典的聚类算法,我想大家都非常熟悉.虽然算法较为简单,在实际应用中却可以有不错的效果:其算法原理也决定了 ...

  3. Batch Normalization原理及其TensorFlow实现——为了减少深度神经网络中的internal covariate shift,论文中提出了Batch Normalization算法,首先是对”每一层“的输入做一个Batch Normalization 变换

    批标准化(Bactch Normalization,BN)是为了克服神经网络加深导致难以训练而诞生的,随着神经网络深度加深,训练起来就会越来越困难,收敛速度回很慢,常常会导致梯度弥散问题(Vanish ...

  4. 回声消除中的LMS和NLMS算法与MATLAB实现

    自适应滤波是数字信号处理的核心技术之一,在科学和工业上有着广泛的应用领域.自适应滤波技术应用广泛,包括回波抵消.自适应均衡.自适应噪声抵消和自适应波束形成.回声对消是当今通信系统中普遍存在的现象.声回 ...

  5. 【Matlab开发】matlab中bar绘图设置与各种距离度量

    [Matlab开发]matlab中bar绘图设置与各种距离度量 标签(空格分隔): [Matlab开发] [机器学习] 声明:引用请注明出处http://blog.csdn.net/lg1259156 ...

  6. vlc 详细使用方法:libvlc_media_add_option 函数中的参数设置

    vlc 详细使用方法:libvlc_media_add_option 函数中的参数设置 [转载自]tinyle的专栏 [原文链接地址]http://blog.csdn.net/myaccella/ar ...

  7. 如何基于MindSpore实现万亿级参数模型算法?

    摘要:近来,增大模型规模成为了提升模型性能的主要手段.特别是NLP领域的自监督预训练语言模型,规模越来越大,从GPT3的1750亿参数,到Switch Transformer的16000亿参数,又是一 ...

  8. 如何在 Java 中实现 Dijkstra 最短路算法

    定义 最短路问题的定义为:设 \(G=(V,E)\) 为连通图,图中各边 \((v_i,v_j)\) 有权 \(l_{ij}\) (\(l_{ij}=\infty\) 表示 \(v_i,v_j\) 间 ...

  9. 转-ArcGIS Engine中的License设置

    AE开发中的License有两种方法进行设置,一种是通过LicenseControl控件,另一种是通过IAoInitialize接口设置.整个应用程序中只能有一种方式存在,如果进行了两种License ...

  10. Android中的颜色设置

    1.在android中经常看到设置的颜色为八位的十六进制的颜色值,例如 public static final class color { public static final int lightb ...

随机推荐

  1. SQL SERVER 2012的安装

    1.将光盘镜像用虚拟光驱加载(WIN10自带虚拟光驱) 2.双击setup.exe 3.选择"安装"-"全新 SQL Server 独立安装或向现有安装添加功能" ...

  2. SQLBI_精通DAX课程笔记_01_DAX介绍

    一:函数式语言 DAX是一个函数式语言,应用于Analysis Services , PowerPivot , 和Power Bi . 二:共同与不同 2.1  共同点 DAX与PowerPivot  ...

  3. Pycharm或cmd在Terminal中运行tensorboard、pip等python包

    这个主要是添加python包的路径到环境变量里 因为装了anaconda,所以我们要找的是对应虚拟环境里的包路径,一般是放在anaconda安装路径下的anaconda3\envs\环境名\Scrip ...

  4. Kubernetes(K8s)最新版搭建

    Kubernetes简单介绍 Kubernetes意为舵手,简称K8s. 前身是Google的Borg.所以一开源就吸引了一大批注意力. 因为谷歌,所以墙.在国内搭建K8s非常头疼. 下面我就来介绍一 ...

  5. 3568F-PCIe 5G通信测试手册

  6. NXP i.MX 8M Plus工业核心板硬件说明书( 四核ARM Cortex-A53 + 单核ARM Cortex-M7,主频1.6GHz)

    1          硬件资源 创龙科技SOM-TLIMX8MP是一款基于NXP i.MX 8M Plus的四核ARM Cortex-A53 + 单核ARM Cortex-M7异构多核处理器设计的高端 ...

  7. Windows服务器安全检查

    为降低windows服务器系统的脆弱性,除了补丁及时更新,还建议加强系统账号的管理. 1.精简系统登录账号,最小化登录权限 检查方法:开始->运行->compmgmt.msc(计算机管理) ...

  8. C# NPOI 读取Excel数据,附案例源码

    项目结构 注意:需要引入NPOI类库 C#代码 Form1.cs using NPOI.HSSF.UserModel; using NPOI.SS.UserModel; using System; u ...

  9. SpringBoot自定义全局异常返回页面

    返回自定义异常界面,需要引入thymeleaf依赖(非必须,如果是简单的html界面则不用) <dependency> <groupId>org.springframework ...

  10. Navicat for mysql 无法连接到虚拟机的linux系统下的mysql

    最近在linux Centos7版本的虚拟机上安装了一个MySql数据库,发现本地可以正常ping通虚拟机,但Navicat则无法正常连接到虚拟机里的MySql数据库,经过一番琢磨,发现解决这个问题的 ...