补题链接:Here

A - box

输出 \(N - A + B\)

B - Various distances

按题意输出 3 种距离即可

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
int main() {
ios_base::sync_with_stdio(false), cin.tie(0);
int N;
ll x;
ll ans1 = 0, ans2 = 0, ans3 = 0;
cin >> N;
for (int i = 0; i < N; i++) {
cin >> x;
ans1 += abs(x);
ans2 += x * x;
ans3 = max(ans3, abs(x));
}
double ans2_ = sqrt(double(ans2));
cout << ans1 << endl;
cout << fixed << setprecision(20) << ans2_ << endl;
cout << ans3 << endl;
}

C - Cream puff

set 容器存因子,然后循环输出

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
int main() {
ios_base::sync_with_stdio(false), cin.tie(0);
ll x, y, a, b;
cin >> x >> y >> a >> b;
ll ans = 0;
while ((a - 1) * x <= b && a * x < y && (double)a * x <= 2e18) {
x *= a, ans++;
}
cout << ans + (y - 1 - x) / b << '\n';
return 0;
}

D - Takahashi Unevolved

题意:Iroha 在游戏中有一只宠物加 Takahashi,为了帮助 Takahashi 变得强力起来,需要将它送入训练场

  • Kakomon Gym:\(STR \times= A,EXP += 1\)
  • AtCoder Gym:\(STR += B,EXP += 1\)

但是 STR 不能超过 Y 的情况下求 EXP 的最大值

思路:最大化去第一种 Gym 的次数然后用 Y减去差值除 B 即可

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
int main() {
ios_base::sync_with_stdio(false), cin.tie(0);
ll x, y, a, b;
cin >> x >> y >> a >> b;
ll ans = 0;
while ((a - 1) * x <= b && a * x < y && (double)a * x <= 2e18) {
x *= a, ans++;
}
cout << ans + (y - 1 - x) / b << '\n';
return 0;
}

E - Traveling Salesman among Aerial Cities

https://blog.csdn.net/weixin_45750972/article/details/109144617

题意:给定边权的计算方法,求n nn个结点的最小曼哈顿回路花费。

思路:状压DP

令\(dp(i,j)\)为状态 \(i\) 下从起点出发到 \(j\) 的最小花费,这里的状态 \(i\) 指从起点要经过的城市

最后答案即为:\(dp[(1<<n)−1][0]\),假设起点为 \(0\)。

状态方程:\(dp[i][j]=min(dp[i][j],dp[i−(1<<j)][k]+dis(k,j)),(i\&(1<<j)>0)\)

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
const int N = 17, M = (1 << 17) + 1;
int n, x[N], y[N], z[N];
ll dp[M][N];
ll d(int a, int b) {
return abs(x[a] - x[b]) + abs(y[a] - y[b]) + max(0, z[b] - z[a]);
}
int main() {
ios_base::sync_with_stdio(false), cin.tie(0);
cin >> n;
for (int i = 0; i < n; ++i) cin >> x[i] >> y[i] >> z[i];
memset(dp, 0x3f, sizeof(dp));
dp[0][0] = 0;
for (int i = 1; i < (1 << n); ++i) {
for (int j = 0; j < n; ++j)
if ((i >> j) & 1)
for (int k = 0; k < n; ++k)
dp[i][j] = min(dp[i][j], dp[i - (1 << j)][k] + d(k, j));
}
cout << dp[(1 << n) - 1][0] << '\n';
return 0;
}

F - Unbranched

官方题解:https://atcoder.jp/contests/abc180/editorial/250

这里做的有点懵,贴一下代码

这里使用了 atcoder/all 头文件,添加方法:Click Here

#include <atcoder/all>
using mint = atcoder::modint1000000007;
int N, M, L;
mint f(int L) {
mint dp[303][303];
dp[0][0] = 1;
for (int i = 0; i < N; i++)
for (int j = 0; j <= i; j++) {
mint T = dp[i][j];
for (int k = 1; i + k <= N && j + k - 1 <= M && k <= L; k++) {
if (k > 1) dp[i + k][j + k] += T;
if (k == 2) T *= 500000004;
dp[i + k][j + k - 1] += T * k;
T *= N - i - k;
}
}
return dp[N][M];
}
int main() {
std::cin >> N >> M >> L;
std::cout << (f(L) - f(L - 1)).val();
return 0;
}

AtCoder Beginner Contest 180 个人题解(快乐DP场)的更多相关文章

  1. KYOCERA Programming Contest 2021(AtCoder Beginner Contest 200) 题解

    KYOCERA Programming Contest 2021(AtCoder Beginner Contest 200) 题解 哦淦我已经菜到被ABC吊打了. A - Century 首先把当前年 ...

  2. AtCoder Beginner Contest 089完整题解

    A - Grouping 2 Time limit : 2sec / Memory limit : 256MB Score : 100 points Problem Statement There a ...

  3. AtCoder Beginner Contest 179 D - Leaping Tak (DP)

    题意:给你一个数字\(n\)和\(k\)个区间,\(S\)表示所有区间的并的集合,你目前在\(1\),每次可以从集合中选择一个数字向右移动,问有多少种方法从\(1\)走到\(n\). 题解:我们从1开 ...

  4. AtCoder Beginner Contest 261E // 按位思考 + dp

    题目链接:E - Many Operations (atcoder.jp) 题意: 给定一个数x,以及n个操作(ti,ai): 当 t = 1 时,将 x & a 当 t = 2 时,将 x ...

  5. Atcoder Beginner Contest 138 简要题解

    D - Ki 题意:给一棵有根树,节点1为根,有$Q$次操作,每次操作将一个节点及其子树的所有节点的权值加上一个值,问最后每个节点的权值. 思路:dfs序再差分一下就行了. #include < ...

  6. 2018.09.08 AtCoder Beginner Contest 109简要题解

    比赛传送门 水题大赛? 全是水题啊!!! T1 ABC333 就是判断是不是两个数都是奇数就行了. 代码: #include<bits/stdc++.h> using namespace ...

  7. AtCoder Beginner Contest 154 题解

    人生第一场 AtCoder,纪念一下 话说年后的 AtCoder 比赛怎么这么少啊(大雾 AtCoder Beginner Contest 154 题解 A - Remaining Balls We ...

  8. AtCoder Beginner Contest 153 题解

    目录 AtCoder Beginner Contest 153 题解 A - Serval vs Monster 题意 做法 程序 B - Common Raccoon vs Monster 题意 做 ...

  9. AtCoder Beginner Contest 184 题解

    AtCoder Beginner Contest 184 题解 目录 AtCoder Beginner Contest 184 题解 A - Determinant B - Quizzes C - S ...

  10. AtCoder Beginner Contest 173 题解

    AtCoder Beginner Contest 173 题解 目录 AtCoder Beginner Contest 173 题解 A - Payment B - Judge Status Summ ...

随机推荐

  1. Vue07-Axios

    Axios axios是一个网络请求相关的库. axios: ajax i/o system 使用axios编写的网络请求代码,可以运行在浏览器端,也可以在Node环境中运行. 01. 支持的请求方式 ...

  2. Typora的安装与使用教程

    一.安装 1.下载 下载地址:Typora 官方中文站 二.安装 1.无脑下一步即可. 三.使用教程 1.Typora系统设置 一般导出使用PDF文件比较好,性价比比较高. 2.其他设置 以下所有设置 ...

  3. AtCoder_abc328

    A - Not Too Hard 题目链接 题目大意 给出\(N\)个数(\(S_1\) \(S_2\)...\(S_n\))和一个\(X\),输出所有小于等于\(X\)的\(S_i\)之和 解题思路 ...

  4. C++ Qt开发:使用顺序容器类

    当我们谈论编程中的数据结构时,顺序容器是不可忽视的一个重要概念.顺序容器是一种能够按照元素添加的顺序来存储和检索数据的数据结构.它们提供了简单而直观的方式来组织和管理数据,为程序员提供了灵活性和性能的 ...

  5. Mongodb安装篇+可视化工具篇

    下载MongoDB 官网下载地址:Download MongoDB Community Server | MongoDB   Version 选择:稳定版4.4.2 Mongo的版本分为稳定版和开发版 ...

  6. MD5在文件安全中的应用与重要性

    一.MD5简介 MD5(Message-Digest Algorithm 5)是一种广泛应用的密码散列函数,由美国密码学家罗纳德·李维斯特(Ronald Linn Rivest)于1992年提出.它主 ...

  7. MinIO的简单使用

    MINIO介绍 什么是对象存储? 以阿里云OSS为例: 对象存储服务OSS(Object Storage Service)是一种海量.安全.低成本.高可靠的云存储服务,适合存放任意类型的文件.容量和处 ...

  8. MinIO客户端之cp

    MinIO提供了一个命令行程序mc用于协助用户完成日常的维护.管理类工作. 官方资料 mc cp 上传文件至指定桶内,命令如下: ./mc cp ./local.json local1/bkt1/ 控 ...

  9. Ubuntu系统部署后优化

    Ubuntu系统配置调整 前期准备 #更改主机名,重启后不变 hostnamectl set-hostname Zabbix-Server01 #更改主机名,重启后变回从前 hostname Zabb ...

  10. 39. 干货系列从零用Rust编写负载均衡及代理,正则及格式替换

    wmproxy wmproxy已用Rust实现http/https代理, socks5代理, 反向代理, 静态文件服务器,四层TCP/UDP转发,七层负载均衡,内网穿透,后续将实现websocket代 ...