补题链接:Here

算法涉及:前缀和,贡献值计算

经典中位数计数问题,记得以前百度之星也出过类似的题,这道题有一个限定范围是要奇数区间的

我们很容易想到,奇数下标到偶数下标或者偶数下标到奇数下标的长度一定是奇数的

对于每个数字,只可能大于,等于,小于b,于是可以重新分别赋值为1,0,-1

那么维护两个前缀和和一个now,如果当前在奇数下标,查询偶数的前缀和的cnt2[now],否则查询奇数的前缀和cnt1[now]

now 是 1到i 的前缀和,因为如果有两个位置比如 2 和 5 的前缀和相等,那么必有 3到4 这段区间的和为 0

所以可以通过查表来计算贡献。另外要注意奇数区间下,一定要有一个b,所以还要找下b的位置

using ll = long long;
const int N = 1e5 + 10; int a[N];
int cnt1[N * 3], cnt2[N * 3]; void solve() {
int n, m; cin >> n >> m;
int p = -1;
cnt2[N] = 1;
for (int i = 1; i <= n; ++i) {
cin >> a[i];
if (a[i] > m)a[i] = 1;
else if (a[i] == m)a[i] = 0, p = i;
else a[i] = -1;
}
int now = 0;
ll ans = 0;
for (int i = 1; i <= n; ++i) {
now += a[i];
if (i & 1)
if (i >= p) ans += cnt2[N + now];
else cnt1[N + now]++;
else {
if (i >= p)ans += cnt1[N + now];
else cnt2[N + now]++;
}
}
cout << ans;
}

【每日一题】35. [CQOI2009]中位数图 (前缀和,贡献值计算)的更多相关文章

  1. BZOJ 1303 CQOI2009 中位数图 水题

    1303: [CQOI2009]中位数图 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2340  Solved: 1464[Submit][Statu ...

  2. BZOJ 1303: [CQOI2009]中位数图【前缀和】

    1303: [CQOI2009]中位数图 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2737  Solved: 1698[Submit][Statu ...

  3. bzoj千题计划175:bzoj1303: [CQOI2009]中位数图

    http://www.lydsy.com/JudgeOnline/problem.php?id=1303 令c[i]表示前i个数中,比d大的数与比d小的数的差,那么如果c[l]=c[r],则[l+1, ...

  4. 【BZOJ1303】[CQOI2009]中位数图(模拟)

    [BZOJ1303][CQOI2009]中位数图(模拟) 题面 BZOJ 洛谷 题解 把大于\(b\)的数设为\(1\),小于\(b\)的数设为\(-1\).显然询问就是有多少个横跨了\(b\)这个数 ...

  5. bzoj 1303: [CQOI2009]中位数图 数学

    1303: [CQOI2009]中位数图 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  6. BZOJ1303 [CQOI2009]中位数图 【乱搞】

    1303: [CQOI2009]中位数图 Time Limit: 1 Sec  Memory Limit: 162 MB Submit: 3086  Solved: 1898 [Submit][Sta ...

  7. BZOJ 1303: [CQOI2009]中位数图(思路题)

    传送门 解题思路 比较好想的思路题.首先肯定要把原序列转化一下,大于\(k\)的变成\(1\),小于\(k\)的变成\(-1\),然后求一个前缀和,还要用\(cnt[]\)记录一下前缀和每个数出现了几 ...

  8. BZOJ 1303: [CQOI2009]中位数图 【水题】

    给出1~n的一个排列,统计该排列有多少个长度为奇数的连续子序列的中位数是b.中位数是指把所有元素从小到大排列后,位于中间的数. Input 第一行为两个正整数n和b ,第二行为1~n 的排列. Out ...

  9. bzoj 303: [CQOI2009]中位数图【前缀和+瞎搞】

    处理出一个序列c,a[i]>b,c[i]=1;a[i]==b,c[i]=0;a[i]<b,c[i]=-1,然后s为c的前缀和,设w为b在a序列里的下标 注意到子序列一定横跨w,并且一个符合 ...

  10. 【BZOJ】1303: [CQOI2009]中位数图(特殊的技巧)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1303 依旧是题解流,,,不看题解没法活,,,第一眼就是瞎搞,然后就是暴力,显然TLE..题解啊题解. ...

随机推荐

  1. GPTs大受欢迎但问题多,企服软件厂商的AI Agent更被B端客户器重

    GPTs大受欢迎但问题多,企服软件厂商的AI Agent更被B端客户器重 比尔盖茨预言智能体是下个平台,超自动化平台的AI Agent更靠谱? 以GPTs为代表的AI Agent只是玩具?揭秘真实可用 ...

  2. Linux机器自建账号并赋予sudo权限,同时修改远程端口

    默认使用root账号来操作Linux有一定风险,因此需要自建账号并赋予sudo权限,方便使用 登录为root用户后,创建账号 adduser <username> Ubuntu系统会同时要 ...

  3. .NET 程序员-开源项目【藏】

    Json.NET http://json.codeplex.com/ Json.Net是一个读写Json效率比较高的.Net框架.Json.Net 使得在.Net环境下使用Json更加简单.通过Lin ...

  4. [ABC328D] Take ABC 题解

    题目翻译 题目描述 给你一个字符串 \(S\) 包含 A.B 和 C 三个不用的字符. 只要字符串 \(S\) 中包含连续的 ABC 就将 ABC 删除掉 再字符串 \(S\) 不能操作之后输出这个字 ...

  5. echarts设置多条折线不是你想的那样简单

    简单的多条折线图 小伙伴写过多条折线图的都知道, 常见的折线图是 xAxis 配置项下的 data属性上设置时间或者日期. series配置项下是对应的 legend中的数据以及该条折线的数据. &l ...

  6. 单元测试平台搭建:sonarQube+sonarScanner+Jenkins+jacoco

    单元测试平台搭建及结果分析 一.方案 需求目标:提高单元测试覆盖率和规范代码编写规范 选用工具:Sonarqube.sonarqube Scanner.Jenkins.jacoco 方案: 工程中引入 ...

  7. 服务网格 Service Mesh

    什么是服务网格? 服务网格是一个软件层,用于处理应用程序中服务之间的所有通信.该层由容器化微服务组成.随着应用程序的扩展和微服务数量的增加,监控服务的性能变得越来越困难.为了管理服务之间的连接,服务网 ...

  8. pytest框架学习-标签@pytest.mark.

    标签 自定义标签(区分大小写) 可以标记测试用例,对测试用例进行分组,有利于对测试用例进行筛选. 比如:给用例打标为API,代表接口自动化的用例,打标方法为@pytest.mark.API,打标后,需 ...

  9. MacOS Sonoma14.2.1系统SSH免密登录

    摘要:MacOS下免密登录的一些注意事项. 系统环境 操作系统:macOS Sonoma 14.2.1 SSH免密登录 ssh免密登录的原理是在本机生成本机的ssh公钥和私钥,将公钥上传至待连接的主机 ...

  10. Python——第五章:os模块、sys模块

    os 模块 os 模块提供了很多允许你的程序与操作系统直接交互的功能 import os 得到当前工作目录,即当前Python脚本工作的目录路径: os.getcwd() 返回指定目录下的所有文件和目 ...