C#二叉搜索树算法
二叉搜索树算法实现原理
二叉搜索树(Binary Search Tree,简称BST)是一种节点有序排列的二叉树数据结构。它具有以下性质:
- 每个节点最多有两个子节点。
- 对于每个节点,其左子树的所有节点值都小于该节点值,其右子树的所有节点值都大于该节点值。
实现基本步骤和代码示例
步骤
- 定义节点类:包含节点值、左子节点和右子节点。
- 插入节点:递归或迭代地将新值插入到树中合适的位置。
- 搜索节点:根据节点值在树中查找特定值。
- 删除节点:从树中删除特定值的节点,并维护树的结构。
- 遍历树:包括前序遍历、中序遍历、后序遍历和层次遍历等。
完整代码示例
namespace HelloDotNetGuide.常见算法
{
public class 二叉搜索树算法
{
public static void BinarySearchTreeRun()
{
var bst = new BinarySearchTree();
// 插入一些值到树中
bst.Insert(50);
bst.Insert(30);
bst.Insert(20);
bst.Insert(40);
bst.Insert(70);
bst.Insert(60);
bst.Insert(80);
bst.Insert(750);
Console.WriteLine("中序遍历(打印有序数组):");
bst.InorderTraversal();
Console.WriteLine("\n");
// 查找某些值
Console.WriteLine("Search for 40: " + bst.Search(40)); // 输出: True
Console.WriteLine("Search for 25: " + bst.Search(25)); // 输出: False
Console.WriteLine("\n");
// 删除某个值
bst.Delete(50);
Console.WriteLine("删除50后:");
bst.InorderTraversal();
}
}
/// <summary>
/// 定义二叉搜索树的节点结构
/// </summary>
public class TreeNode
{
public int Value;
public TreeNode Left;
public TreeNode Right;
public TreeNode(int value)
{
Value = value;
Left = null;
Right = null;
}
}
/// <summary>
/// 定义二叉搜索树类
/// </summary>
public class BinarySearchTree
{
private TreeNode root;
public BinarySearchTree()
{
root = null;
}
#region 插入节点
/// <summary>
/// 插入新值到二叉搜索树中
/// </summary>
/// <param name="value">value</param>
public void Insert(int value)
{
if (root == null)
{
root = new TreeNode(value);
}
else
{
InsertRec(root, value);
}
}
private void InsertRec(TreeNode node, int value)
{
if (value < node.Value)
{
if (node.Left == null)
{
node.Left = new TreeNode(value);
}
else
{
InsertRec(node.Left, value);
}
}
else if (value > node.Value)
{
if (node.Right == null)
{
node.Right = new TreeNode(value);
}
else
{
InsertRec(node.Right, value);
}
}
else
{
//值已经存在于树中,不再插入
return;
}
}
#endregion
#region 查找节点
/// <summary>
/// 查找某个值是否存在于二叉搜索树中
/// </summary>
/// <param name="value">value</param>
/// <returns></returns>
public bool Search(int value)
{
return SearchRec(root, value);
}
private bool SearchRec(TreeNode node, int value)
{
// 如果当前节点为空,表示未找到目标值
if (node == null)
{
return false;
}
// 如果找到目标值,返回true
if (node.Value == value)
{
return true;
}
// 递归查找左子树或右子树
if (value < node.Value)
{
return SearchRec(node.Left, value);
}
else
{
return SearchRec(node.Right, value);
}
}
#endregion
#region 中序遍历
/// <summary>
/// 中序遍历(打印有序数组)
/// </summary>
public void InorderTraversal()
{
InorderTraversalRec(root);
}
private void InorderTraversalRec(TreeNode root)
{
if (root != null)
{
InorderTraversalRec(root.Left);
Console.WriteLine(root.Value);
InorderTraversalRec(root.Right);
}
}
#endregion
#region 删除节点
/// <summary>
/// 删除某个值
/// </summary>
/// <param name="val">val</param>
public void Delete(int val)
{
root = DeleteNode(root, val);
}
private TreeNode DeleteNode(TreeNode node, int val)
{
if (node == null)
{
return null;
}
if (val < node.Value)
{
node.Left = DeleteNode(node.Left, val);
}
else if (val > node.Value)
{
node.Right = DeleteNode(node.Right, val);
}
else
{
// 节点有两个子节点
if (node.Left != null && node.Right != null)
{
// 使用右子树中的最小节点替换当前节点
TreeNode minNode = FindMin(node.Right);
node.Value = minNode.Value;
node.Right = DeleteNode(node.Right, minNode.Value);
}
// 节点有一个子节点或没有子节点
else
{
TreeNode? temp = node.Left != null ? node.Left : node.Right;
node = temp;
}
}
return node;
}
/// <summary>
/// 找到树中的最小节点
/// </summary>
/// <param name="node"></param>
/// <returns></returns>
private TreeNode FindMin(TreeNode node)
{
while (node.Left != null)
{
node = node.Left;
}
return node;
}
#endregion
}
}
输出结果:

数组与搜索树的效率对比
二叉搜索树的各项操作的时间复杂度都是对数阶,具有稳定且高效的性能。只有在高频添加、低频查找删除数据的场景下,数组比二叉搜索树的效率更高。

二叉搜索树常见应用
- 用作系统中的多级索引,实现高效的查找、插入、删除操作。
- 作为某些搜索算法的底层数据结构。
- 用于存储数据流,以保持其有序状态。
C#数据结构与算法实战入门指南
参考文章
- https://www.hello-algo.com/chapter_tree/binary_search_tree
- https://www.hello-algo.com/chapter_tree/binary_tree_traversal
C#二叉搜索树算法的更多相关文章
- 【转载】图解:二叉搜索树算法(BST)
原文:图解:二叉搜索树算法(BST) 摘要: 原创出处:www.bysocket.com 泥瓦匠BYSocket 希望转载,保留摘要,谢谢!“岁月极美,在于它必然的流逝”“春花 秋月 夏日 冬雪”— ...
- 二叉搜索树算法详解与Java实现
二叉查找树可以递归地定义如下,二叉查找树或者是空二叉树,或者是满足下列性质的二叉树: (1)若它的左子树不为空,则其左子树上任意结点的关键字的值都小于根结点关键字的值. (2)若它的右子树不为空,则其 ...
- [LeetCode] Delete Node in a BST 删除二叉搜索树中的节点
Given a root node reference of a BST and a key, delete the node with the given key in the BST. Retur ...
- [Swift]LeetCode450. 删除二叉搜索树中的节点 | Delete Node in a BST
Given a root node reference of a BST and a key, delete the node with the given key in the BST. Retur ...
- [Swift]LeetCode701. 二叉搜索树中的插入操作 | Insert into a Binary Search Tree
Given the root node of a binary search tree (BST) and a value to be inserted into the tree, insert t ...
- [LeetCode] Insert into a Binary Search Tree 二叉搜索树中插入结点
Given the root node of a binary search tree (BST) and a value to be inserted into the tree, insert t ...
- 230. 二叉搜索树中第K小的元素
230. 二叉搜索树中第K小的元素 题意 给定一个二叉搜索树,编写一个函数 kthSmallest 来查找其中第 k 个最小的元素. 你可以假设 k 总是有效的,1 ≤ k ≤ 二叉搜索树元素个数. ...
- leetcode 二叉搜索树中第K小的元素 python
二叉搜索树中第K小的元素 给定一个二叉搜索树,编写一个函数 kthSmallest 来查找其中第 k 个最小的元素. 说明:你可以假设 k 总是有效的,1 ≤ k ≤ 二叉搜索树元 ...
- LeetCode:二叉搜索树中第K小的数【230】
LeetCode:二叉搜索树中第K小的数[230] 题目描述 给定一个二叉搜索树,编写一个函数 kthSmallest 来查找其中第 k 个最小的元素. 说明:你可以假设 k 总是有效的,1 ≤ k ...
- LeetCode:二叉搜索树中的搜索【700】
LeetCode:二叉搜索树中的搜索[700] 题目描述 给定二叉搜索树(BST)的根节点和一个值. 你需要在BST中找到节点值等于给定值的节点. 返回以该节点为根的子树. 如果节点不存在,则返回 N ...
随机推荐
- mysql 如何分配root账号创建数据库的权限
1.mysql 如何分配root账号创建数据库的权限 在 MySQL 中,root 用户通常具有所有的权限,包括创建数据库的权限.但是,如果我们想要为另一个用户分配创建数据库的权限,或者想要限制 ro ...
- Nuxt3 的生命周期和钩子函数(三)
title: Nuxt3 的生命周期和钩子函数(三) date: 2024/6/27 updated: 2024/6/27 author: cmdragon excerpt: 摘要:概述了Nuxt3的 ...
- 从零开始学Spring Boot系列-集成Spring Security实现用户认证与授权
在Web应用程序中,安全性是一个至关重要的方面.Spring Security是Spring框架的一个子项目,用于提供安全访问控制的功能.通过集成Spring Security,我们可以轻松实现用户认 ...
- Hadoop集群管理之fsimage和edits工作机制
客户端对hdfs进行写文件时会首先被记录在edits文件中. edits修改时元数据也会更新. 每次hdfs更新时edits先更新后客户端才会看到最新信息. fsimage:是namenode中关于元 ...
- MinIO使用记录
探索MinIO:高性能.分布式对象存储解决方案 注:本文除代码外多数为AI生成 最近因为有项目需要换成Amazon S3的云存储,所以把之前做过的minio部分做一个记录,后面也会把基于这版改造的S3 ...
- webpack4.15.1 学习笔记(八) — 缓存(Caching)
目录 输出文件名(Output Filenames) 缓存第三方库 将 js 文件放到一个文件夹中 webpack 打包模块化后的应用程序,会生成一个可部署的 /dist目录,只要 /dist 目录中 ...
- AT_agc022_a 题解
洛谷链接&Atcoder 链接 本篇题解为此题较简单做法及较少码量,并且码风优良,请放心阅读. 题目简述 给定字符串 \(S\) , 仅包含互不相同的小写字母, 你需要找到仅包含互不相同的小写 ...
- C#:只支持GET和POST方法的浏览器,如何发送PUT/DELETE请求?RESTful WebAPI如何响应?
理想的RESTful WebAPI采用面向资源的架构,并使用请求的HTTP方法表示针对目标资源的操作类型.但是理想和现实是有距离的,虽然HTTP协议提供了一系列原生的HTTP方法,但是在具体的网络环境 ...
- Django 通过自定义context_processors实现自定义tag
通过自定义context_processors实现自定义tag by:授客 QQ:1033553122 测试环境 Win7 Django 1.11 实践 步骤1 应用根目录下,新建自定义context ...
- CF301B Yaroslav and Time 题解
CF301B 这不最短路的板子题吗? 思路 用 \(ak\) 代表走到第 \(k\) 点时的可恢复单位时间的值. \(i\) 到 \(j\) 的距离是 \(\left ( \left | xi-xj ...