LSTM实现文本情感分类demo
import torch
import torch.optim as optim
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
from torchtext import data,datasets
class Args:
max_vocab_size = 25000 #词表最大规模
n_labels = 5
epochs = 5
embedding_dim = 300
hidden_dim = 512
n_layers = 3
batch_size = 64
display_freq = 50
lr = 0.01
args = Args()
TEXT = data.Field()
LABEL = data.LabelField(dtype=torch.float)
train_data,valid_data,test_data = datasets.SST.splits(
TEXT,LABEL,fine_grained=True
)
TEXT.build_vocab(
train_data,
max_size = args.max_vocab_size,
vectors="glove.6B.300d",
unk_init = torch.Tensor.normal_
)
LABEL.build_vocab(train_data)
device='cuda'
train_iter,valid_iter,test_iter=data.BucketIterator.splits(
(train_data,valid_data,test_data),
batch_size = args.batch_size,
device = device
)
input_dim = len(TEXT.vocab)
output_dim = args.n_labels
class Model(nn.Module):
def __init__(self,
in_dim,
emb_dim,
hid_dim,
out_dim,
n_layer):
super(Model,self).__init__()
self.embedding = nn.Embedding(in_dim,emb_dim)
self.rnn = nn.LSTM(emb_dim,hid_dim,n_layer)
self.linear = nn.Linear(hid_dim,out_dim)
self.n_layer = n_layer
self.hid_dim = hid_dim
def forward(self,text):
embedded = self.embedding(text) #获取向量表示
h0 = embedded.new_zeros(
self.n_layer,embedded.size(1),self.hid_dim
)
c0 = embeded.new_zeros(
self.n_layer,embedded.size(1),self.hid_dim
)
output,(hn,cn) = self.rnn(embedded,(h0,c0))
return self.linear(output[-1])
model = Model(input_dim,args.embedding_dim,args.hidden_dim,output_dim,args.n_layers)
pretrained_embeddings = TEXT.vocab.vectors
model.embedding.weight.data.copy_(pretrained_embeddings)
model.to(device)
optimizer = optim.Adam(
model.parameters(),lr=args.lr
)
def train(epoch,model,iterator,optimizer):
loss_list = []
acc_list = []
model.train()
for i,batch in tqdm(enumerate(iterator),total = len(iterator)):
optimizer.zero_grad()
text = batch.text.to(device)
label = batch.label.long().to(device)
predictions = model(text)
loss = F.cross_entropy(predictions,label)
loss.backward()
optimizer.step()
acc = (predictions.max(1)[1] == label).float().mean()
loss_list.append(loss.item())
acc_list.append(acc.item())
if i % args.display_freq == 0:
print("Epoch %02d,Iter [%03d/%03d],"
"train loss = %.4f,train acc = %.4f" %
(epoch,i,len(iterator),np.mean(loss_list),np.mean(acc_list)))
loss_list.clear()
acc_list.clear()
def evaluate(epoch,model,iterator):
val_loss = 0
val_acc = 0
model.eval()
with torch.no_grad():
for batch in iterator:
text = batch.text.to(device)
label = batch.label.long().to(device)
predictions = model(text)
loss = F.cross_entropy(predictions,label)
acc = (predictions.max(1)[1] == label).float().mean()
val_loss += loss.item()
val_acc += acc_item()
val_loss = val_loss/len(iterator)
val_acc = val_acc/len(iterator)
print('...Epoch %02d,val loss = %.4f,val acc = %.4f' %(
epoch,val_loss,val_acc))
return val_loss,val_acc
best_acc = 0
best_epoch = -1
for epoch in range(1,args.epochs+1):
train(epoch,model,train_iter,optimizer)
valid_loss,valid_acc = evaluate(epoch,model,valid_iter)
if valid_acc > best_acc:
best_acc = valid_acc
best_epoch = epoch
torch.save(
model.state_dict(),
'best-model.pth'
)
print('Test best model @ Epoch %02d' % best_epoch)
model.load_state_dict(torch.load('best-model.pth'))
test_loss,test_acc = evaluate(epoch,model,test_iter)
print('Finally,test loss = %.4f,test acc = %.4f' %(test_loss,test_acc))
LSTM实现文本情感分类demo的更多相关文章
- NLP文本情感分类传统模型+深度学习(demo)
文本情感分类: 文本情感分类(一):传统模型 摘自:http://spaces.ac.cn/index.php/archives/3360/ 测试句子:工信处女干事每月经过下属科室都要亲口交代24口交 ...
- pytorch 文本情感分类和命名实体识别NER中LSTM输出的区别
文本情感分类: 文本情感分类采用LSTM的最后一层输出 比如双层的LSTM,使用正向的最后一层和反向的最后一层进行拼接 def forward(self,input): ''' :param inpu ...
- 文本情感分类:分词 OR 不分词(3)
为什么要用深度学习模型?除了它更高精度等原因之外,还有一个重要原因,那就是它是目前唯一的能够实现“端到端”的模型.所谓“端到端”,就是能够直接将原始数据和标签输入,然后让模型自己完成一切过程——包括特 ...
- 基于Bert的文本情感分类
详细代码已上传到github: click me Abstract: Sentiment classification is the process of analyzing and reaso ...
- NLP之基于Bi-LSTM和注意力机制的文本情感分类
Bi-LSTM(Attention) @ 目录 Bi-LSTM(Attention) 1.理论 1.1 文本分类和预测(翻译) 1.2 注意力模型 1.2.1 Attention模型 1.2.2 Bi ...
- kaggle之电影评论文本情感分类
电影文本情感分类 Github地址 Kaggle地址 这个任务主要是对电影评论文本进行情感分类,主要分为正面评论和负面评论,所以是一个二分类问题,二分类模型我们可以选取一些常见的模型比如贝叶斯.逻辑回 ...
- NLP之基于TextCNN的文本情感分类
TextCNN @ 目录 TextCNN 1.理论 1.1 基础概念 最大汇聚(池化)层: 1.2 textCNN模型结构 2.实验 2.1 实验步骤 2.2 算法模型 1.理论 1.1 基础概念 在 ...
- NLP入门(十)使用LSTM进行文本情感分析
情感分析简介 文本情感分析(Sentiment Analysis)是自然语言处理(NLP)方法中常见的应用,也是一个有趣的基本任务,尤其是以提炼文本情绪内容为目的的分类.它是对带有情感色彩的主观性 ...
- NLP采用Bert进行简单文本情感分类
参照当Bert遇上Kerashttps://spaces.ac.cn/archives/6736此示例准确率达到95.5%+ https://github.com/CyberZHG/keras-ber ...
- keras实例学习-双向LSTM进行imdb情感分类
源码:https://github.com/keras-team/keras/blob/master/examples/imdb_bidirectional_lstm.py 及keras中文文档 1. ...
随机推荐
- 记一次ThreadLocal中的用户信息混乱问题
前言 记录一次开发中遇到的关于 ThreadLocal 问题,场景是数据库表中的操作人总是无缘无故的被更改,排查了几遍代码才发现是 ThreadLocal 没有及时清理导致的. 一.为什么使用 Thr ...
- C语言:单链表删除学生信息,增加学生信息(简易版)
假设用户都是正常的,不会输入一些乱七八糟的东西. 功能1:输出学生学号和成绩,用动态连链表来存放,继续存放学生信息的时候可以继续输入之前输入过的学号信息,打印的时候会分开打印(因为是简易版本,没有太完 ...
- ETSI GS MEC 015,MEP 带宽管理 API
目录 文章目录 目录 版本 ETSI MEC 对 MEP 带宽管理功能的定义 功能理解 Bandwidth Management Service BWMS UML ME APP registers t ...
- MySQL知识网络
MySQL知识网络 引擎 InnoDB 支持表锁 .行锁 支持事务 *.frm 表结构文件 *.idb 表数据和索引文件 MyISAM 支持表锁 *.frm 表结构文件 *.MYD 表数据文件 *.M ...
- Linux中根据关键字获取某一行的行号
[root@localhost ~]# cat test.txt 123213 ehualu.server ehualu.docker 10.0.0.10 ehualu.server ehualu.d ...
- C#开发的股票盯盘小工具——摸鱼助手,附源码
写了个盯盘小工具,最近发现很多炒股的小伙伴,上班期间看手机频繁是不是影响不好?电脑上打开交易软件,那影响是不是更不好?所以我就写了个小工具,给大家"摸鱼"用.虽然是摸鱼用,但是平常 ...
- Python 潮流周刊#53:我辈楷模,一个约见诺奖得主,一个成为核心开发者
本周刊由 Python猫 出品,精心筛选国内外的 250+ 信息源,为你挑选最值得分享的文章.教程.开源项目.软件工具.播客和视频.热门话题等内容.愿景:帮助所有读者精进 Python 技术,并增长职 ...
- LeetCode 451. Sort Characters By Frequency 根据字符出现频率排序 (C++/Java)
题目: Given a string, sort it in decreasing order based on the frequency of characters. Example 1: Inp ...
- 如何发现及处理 MySQL 主从延迟问题
在 Percona MySQL 支持团队中,我们经常看到客户抱怨复制延迟的问题.当然,这对 MySQL 用户来说并不是什么新鲜事,多年来我们在 MySQL 性能博客上发表过一些关于这个主题的文章(过去 ...
- Linux使用docker搭建maven私有仓库
引言 在实际开发工作中,通常需要搭建maven私有仓库,今天就教大家如何搭建一套maven的私有仓库 Nexus介绍 Nexus 是Maven仓库管理器,如果你使用Maven,你可以从Maven中央仓 ...