bzoj 1127 [POI2008]KUP——思路(悬线法)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1127
大于2*K的视为不能选的“坏点”。有单个格子满足的就直接输出。
剩下的都是<K的格子,求面积大于等于K的一个矩形;若还<=2*K就直接输出,否则一列一列删;
删去一列后若仍>=2*K,继续;若>=K&&<=2*K,就输出;若<K,则删去的那一列满足>=K,在那列上一格一格删,因为格子<K,所以不能从>2*K跳到<K,一定有解了。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=;
int n,K,D,a[N][N],l[N][N],r[N][N],u[N][N],p0,p1;
ll s[N][N];
bool b[N][N],flag;
int rdn()
{
int ret=;bool fx=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')fx=;ch=getchar();}
while(ch>=''&&ch<='') ret=(ret<<)+(ret<<)+ch-'',ch=getchar();
return fx?ret:-ret;
}
ll calc(int h1,int l1,int h2,int l2)
{
return s[h2][l2]-s[h2][l1-]-s[h1-][l2]+s[h1-][l1-];
}
void solve2(int h1,int h2,int j)
{
int sm=calc(h1,j,h2,j);
if(sm>=K&&sm<=D){printf("%d %d %d %d\n",j,h1,j,h2);return;}
for(int i=h2;i>=h1;i--)
{
sm-=a[i][j];
if(sm>=K&&sm<=D){printf("%d %d %d %d\n",j,h1,j,i-);return;}
}
}
void solve(int h1,int l1,int h2,int l2)
{
ll sm=calc(h1,l1,h2,l2);
if(sm<K)return;
if(sm>=K&&sm<=D){printf("%d %d %d %d\n",l1,h1,l2,h2);flag=;return;}
for(int i=l2;i>=l1;i--)
{
sm=calc(h1,l1,h2,i-);
if(sm>=K&&sm<=D)
{
printf("%d %d %d %d\n",l1,h1,i-,h2);
flag=;return;
}
if(sm<K)
{
solve2(h1,h2,i);flag=;return;
}
}
}
int main()
{
K=rdn(); n=rdn(); D=(K<<);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
a[i][j]=rdn(); if(a[i][j]>D)b[i][j]=;
if(a[i][j]>=K&&a[i][j]<=D)p0=j,p1=i;
s[i][j]=s[i][j-]+a[i][j];
}
if(p0){printf("%d %d %d %d\n",p0,p1,p0,p1);return ;}
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)s[i][j]+=s[i-][j]; for(int i=,k;i<=n;i++)
for(int j=,k=;j<=n;j++)
{
if(!b[i-][j]) u[i][j]=u[i-][j]+;
else u[i][j]=;
if(!b[i][j])l[i][j]=max(k,l[i-][j]);
else k=j+;
}
for(int j=;j<=n;j++)r[][j]=n;//!
for(int i=,k;i<=n;i++)
for(int j=n,k=n;j>=;j--)
{
if(!b[i][j])r[i][j]=min(k,r[i-][j]);
else k=j-,r[i][j]=n;//for don't influence i+1,j
if(!b[i][j])solve(i-u[i][j]+,l[i][j],i,r[i][j]);
if(flag)return ;
}
puts("NIE");
return ;
}
bzoj 1127 [POI2008]KUP——思路(悬线法)的更多相关文章
- 【BZOJ】3039: 玉蟾宫 悬线法
[题意]给定01矩阵,求最大全1子矩阵.n,m<=1000. [算法]动态规划(悬线法) [题解]★对于01矩阵中的任意一个全1极大子矩阵,都可以在其上边界遇到的障碍点处悬线到下边界的点x,则点 ...
- BZOJ 1057: [ZJOI2007]棋盘制作 悬线法求最大子矩阵+dp
1057: [ZJOI2007]棋盘制作 Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑 ...
- [BZOJ] 1127: [POI2008]KUP
似曾相识的感觉 考虑另一个判断问题,给定一个k,问这个k是否可行 存在矩形和\(sum>2k\),则该矩阵不对判定做出贡献 存在矩形和\(sum\in [k,2k]\),则我们找到了一个解 于是 ...
- [POJ1964]City Game (悬线法)
题意 其实就是BZOJ3039 不过没权限号(粗鄙之语) 同时也是洛谷4147 就是求最大子矩阵然后*3 思路 悬线法 有个博客讲的不错https://blog.csdn.net/u012288458 ...
- P1169 [ZJOI2007]棋盘制作 悬线法or单调栈
思路:悬线法\(or\)单调栈 提交:2次 错因:正方形面积取错了\(QwQ\) 题解: 悬线法 讲解:王知昆\(dalao\)的\(PPT\) 详见代码: #include<cstdio> ...
- 【BZOJ-1127】KUP 悬线法 + 贪心
1127: [POI2008]KUP Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 317 Solved: 11 ...
- BZOJ 1057: [ZJOI2007]棋盘制作( dp + 悬线法 )
对于第一问, 简单的dp. f(i, j)表示以(i, j)为左上角的最大正方形, f(i, j) = min( f(i + 1, j), f(i, j + 1), f(i + 1, j + 1)) ...
- BZOJ 3039: 玉蟾宫( 悬线法 )
最大子矩阵...悬线法..时间复杂度O(nm) 悬线法就是记录一个H向上延伸的最大长度(悬线), L, R向左向右延伸的最大长度, 然后通过递推来得到. ----------------------- ...
- 悬线法 || BZOJ 1057: [ZJOI2007]棋盘制作 || Luogu P1169 [ZJOI2007]棋盘制作
题面:P1169 [ZJOI2007]棋盘制作 题解: 基本是悬线法板子,只是建图判断时有一点点不同. 代码: #include<cstdio> #include<cstring&g ...
随机推荐
- android wifi state and wifi ap state
/** * Wi-Fi is currently being disabled. The state will change to {@link #WIFI_STATE_DISABLED} if * ...
- 从SDCard获取的图片按分辨率处理的方法
前段时间公司开发的Launcher要做主题切换的功能,但切换主题时须要从sdcard中获取要切换的图片资源,拿到后图片的大小不正常. 后来查找原因是:系统对不同分辨率拿到的图片资源会自己主动的做转化, ...
- 怎么设置MySQL就能让别人访问本机的数据库了?
for all ips use below GRANT ALL PRIVILEGES ON *.* TO 'myuser'@'%' WITH GRANT OPTION; for particular ...
- 可在 html5 游戏中使用的 js 工具库
可在 html5 游戏中使用的 js 工具库 作者: 木頭 时间: September 21, 2014 分类: Utilities,Game 使用 cocos2d-js 3.0 开发游戏项目两三个月 ...
- 微博达人硅谷之歌:Testin云測移动搜索性能測试非常是让人信服
微博达人硅谷之歌:Testin云測移动搜索性能測试非常是让人信服 2014/10/08 · Testin · 开发人员訪谈 2013年11月1日,谷歌运行董事长施密特(Eric Emerson Sch ...
- javascript 高级编程系列 - 函数
一.函数创建 1. 函数声明 (出现在全局作用域,或局部作用域) function add (a, b) { return a + b; } function add(a, b) { return a ...
- Linux 下装mysql[Ubuntu & CentOS]
Ubuntu: https://blog.csdn.net/hipilee/article/details/77610916
- stringByAppendingPathComponent和stringByAppendingString 的区别
stringByAppendingPathComponent和stringByAppendingString 的区别 stringByAppendingPathComponent NSString ...
- C# 比较两个数组中的内容是否相同的算法
这里要比较的是两个数组中的内容是否相同,以int数组为例 int[] Arraya=new[] {1,2,3,4,5} int[] Arrayb=new[] {5,3,2,1,4} 以上两个数组内的值 ...
- 2016年最值得新手程序猿阅读的书:《增长project师指南》
这本书的来源于根据我在<Repractise简单介绍篇:Web开发的七天里>中所说的 Web 开发的七个步骤而展开的电子书.当然它也是一个 APP.它一本关于怎样成为增长project师的 ...