题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1127

大于2*K的视为不能选的“坏点”。有单个格子满足的就直接输出。

剩下的都是<K的格子,求面积大于等于K的一个矩形;若还<=2*K就直接输出,否则一列一列删;

删去一列后若仍>=2*K,继续;若>=K&&<=2*K,就输出;若<K,则删去的那一列满足>=K,在那列上一格一格删,因为格子<K,所以不能从>2*K跳到<K,一定有解了。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=;
int n,K,D,a[N][N],l[N][N],r[N][N],u[N][N],p0,p1;
ll s[N][N];
bool b[N][N],flag;
int rdn()
{
int ret=;bool fx=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')fx=;ch=getchar();}
while(ch>=''&&ch<='') ret=(ret<<)+(ret<<)+ch-'',ch=getchar();
return fx?ret:-ret;
}
ll calc(int h1,int l1,int h2,int l2)
{
return s[h2][l2]-s[h2][l1-]-s[h1-][l2]+s[h1-][l1-];
}
void solve2(int h1,int h2,int j)
{
int sm=calc(h1,j,h2,j);
if(sm>=K&&sm<=D){printf("%d %d %d %d\n",j,h1,j,h2);return;}
for(int i=h2;i>=h1;i--)
{
sm-=a[i][j];
if(sm>=K&&sm<=D){printf("%d %d %d %d\n",j,h1,j,i-);return;}
}
}
void solve(int h1,int l1,int h2,int l2)
{
ll sm=calc(h1,l1,h2,l2);
if(sm<K)return;
if(sm>=K&&sm<=D){printf("%d %d %d %d\n",l1,h1,l2,h2);flag=;return;}
for(int i=l2;i>=l1;i--)
{
sm=calc(h1,l1,h2,i-);
if(sm>=K&&sm<=D)
{
printf("%d %d %d %d\n",l1,h1,i-,h2);
flag=;return;
}
if(sm<K)
{
solve2(h1,h2,i);flag=;return;
}
}
}
int main()
{
K=rdn(); n=rdn(); D=(K<<);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
a[i][j]=rdn(); if(a[i][j]>D)b[i][j]=;
if(a[i][j]>=K&&a[i][j]<=D)p0=j,p1=i;
s[i][j]=s[i][j-]+a[i][j];
}
if(p0){printf("%d %d %d %d\n",p0,p1,p0,p1);return ;}
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)s[i][j]+=s[i-][j]; for(int i=,k;i<=n;i++)
for(int j=,k=;j<=n;j++)
{
if(!b[i-][j]) u[i][j]=u[i-][j]+;
else u[i][j]=;
if(!b[i][j])l[i][j]=max(k,l[i-][j]);
else k=j+;
}
for(int j=;j<=n;j++)r[][j]=n;//!
for(int i=,k;i<=n;i++)
for(int j=n,k=n;j>=;j--)
{
if(!b[i][j])r[i][j]=min(k,r[i-][j]);
else k=j-,r[i][j]=n;//for don't influence i+1,j
if(!b[i][j])solve(i-u[i][j]+,l[i][j],i,r[i][j]);
if(flag)return ;
}
puts("NIE");
return ;
}

bzoj 1127 [POI2008]KUP——思路(悬线法)的更多相关文章

  1. 【BZOJ】3039: 玉蟾宫 悬线法

    [题意]给定01矩阵,求最大全1子矩阵.n,m<=1000. [算法]动态规划(悬线法) [题解]★对于01矩阵中的任意一个全1极大子矩阵,都可以在其上边界遇到的障碍点处悬线到下边界的点x,则点 ...

  2. BZOJ 1057: [ZJOI2007]棋盘制作 悬线法求最大子矩阵+dp

    1057: [ZJOI2007]棋盘制作 Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑 ...

  3. [BZOJ] 1127: [POI2008]KUP

    似曾相识的感觉 考虑另一个判断问题,给定一个k,问这个k是否可行 存在矩形和\(sum>2k\),则该矩阵不对判定做出贡献 存在矩形和\(sum\in [k,2k]\),则我们找到了一个解 于是 ...

  4. [POJ1964]City Game (悬线法)

    题意 其实就是BZOJ3039 不过没权限号(粗鄙之语) 同时也是洛谷4147 就是求最大子矩阵然后*3 思路 悬线法 有个博客讲的不错https://blog.csdn.net/u012288458 ...

  5. P1169 [ZJOI2007]棋盘制作 悬线法or单调栈

    思路:悬线法\(or\)单调栈 提交:2次 错因:正方形面积取错了\(QwQ\) 题解: 悬线法 讲解:王知昆\(dalao\)的\(PPT\) 详见代码: #include<cstdio> ...

  6. 【BZOJ-1127】KUP 悬线法 + 贪心

    1127: [POI2008]KUP Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 317  Solved: 11 ...

  7. BZOJ 1057: [ZJOI2007]棋盘制作( dp + 悬线法 )

    对于第一问, 简单的dp. f(i, j)表示以(i, j)为左上角的最大正方形, f(i, j) = min( f(i + 1, j), f(i, j + 1), f(i + 1, j + 1)) ...

  8. BZOJ 3039: 玉蟾宫( 悬线法 )

    最大子矩阵...悬线法..时间复杂度O(nm) 悬线法就是记录一个H向上延伸的最大长度(悬线), L, R向左向右延伸的最大长度, 然后通过递推来得到. ----------------------- ...

  9. 悬线法 || BZOJ 1057: [ZJOI2007]棋盘制作 || Luogu P1169 [ZJOI2007]棋盘制作

    题面:P1169 [ZJOI2007]棋盘制作 题解: 基本是悬线法板子,只是建图判断时有一点点不同. 代码: #include<cstdio> #include<cstring&g ...

随机推荐

  1. linux 设置ssh密钥登录

    一.查看服务器上是否开启了sshd服务 要确认linux是不是安装了和开启了ssh服务可以输入 netstat -an|grep 22,查看22端口是否打开,如果找开,则证明SSH服务开启了. ps ...

  2. 如何重建一个损坏的调用堆栈(callstack)

    原文作者:Aaron Ballman原文时间:2011年07月04日原文地址:http://blog.aaronballman.com/2011/07/reconstructing-a-corrupt ...

  3. LVDS、MIPI、EDP、VGA、DVI、HDMI、DP3.0(雷电接口)

    1.LVDS 2.mipi 3.EDP:Embedded DisplayPort 4.VGA VGA接口的特性: 1)理论上能够支持2048x1536分辨率画面传输. 2)VGA由于是模拟信号传输,所 ...

  4. PHP中多维数组查找某个值是否存在的方法

    in_array — 检查数组中是否存在某个值,只是这个方法不能检查多维数组. 所以可以编写类似下面的递归方法来检查多维数组. function deep_in_array($value, $arra ...

  5. HMM MEMM CRF 差别 联系

    声明:本文主要是基于网上的材料做了文字编辑,原创部分甚少.參考资料见最后. 隐马尔可夫模型(Hidden Markov Model.HMM),最大熵马尔可夫模型(Maximum Entropy Mar ...

  6. JS计算网页停留时间

    <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/ ...

  7. EasyCamera海康摄像机向EasyDarwin云平台推送音视频数据的缓存设计

    本文转自EasyDarwin团队成员Alex的博客:http://blog.csdn.net/cai6811376 EasyCamera在向EasyDarwin云平台推送音视频数据时,有时一个I帧会很 ...

  8. 超实用的 Nginx 极简教程,覆盖了常用场景(转)

    概述 安装与使用 安装 使用 nginx 配置实战 http 反向代理配置 负载均衡配置 网站有多个 webapp 的配置 https 反向代理配置 静态站点配置 搭建文件服务器 跨域解决方案 参考 ...

  9. EM算法索引

    把这n个{试验结果来自B的概率}求和得到期望,平均后,得到B出正面的似然估计,同理有p和q. 重复迭代,直到收敛为止 http://blog.csdn.net/junnan321/article/de ...

  10. git文章列表

    关于gitlab默认clone协议 Git实现从本地加入项目到远程仓库 翻翻git之---一个简单的标签控件 LabelView (随手发了两张小宝宝的玩耍照) id=1125" targe ...