Tensorflow知识点学习
tf.concat([tensor1, tensor2, tensor3,...], axis)
先给出tf源代码中的解释:
t1 = [[1, 2, 3], [4, 5, 6]]
t2 = [[7, 8, 9], [10, 11, 12]]
tf.concat([t1, t2], 0) # [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
tf.concat([t1, t2], 1) # [[1, 2, 3, 7, 8, 9], [4, 5, 6, 10, 11, 12]]
# tensor t3 with shape [2, 3]
# tensor t4 with shape [2, 3]
tf.shape(tf.concat([t3, t4], 0)) # [4, 3]
tf.shape(tf.concat([t3, t4], 1)) # [2, 6]
这里解释了当axis=0和axis=1的情况,怎么理解这个axis呢?其实这和numpy中的np.concatenate()用法是一样的。
axis=0 代表在第0个维度拼接
axis=1 代表在第1个维度拼接
对于一个二维矩阵,第0个维度代表最外层方括号所框下的子集,第1个维度代表内部方括号所框下的子集。维度越高,括号越小。
对于这种情况,我可以再解释清楚一点:
对于[ [ ], [ ]]和[[ ], [ ]],低维拼接等于拿掉最外面括号,高维拼接是拿掉里面的括号(保证其他维度不变)。
这样就可以理解多维矩阵的拼接了,可以用axis的设置来从不同维度进行拼接。
对于三维矩阵的拼接,自然axis取值范围是[0, 1, 2]。
对于axis等于负数的情况
负数在数组索引里面表示倒数(countdown)。比如,对于列表ls = [1,2,3]而言,ls[-1] = 3,表示读取倒数第一个索引对应值。
axis=-1表示倒数第一个维度,对于三维矩阵拼接来说,axis=-1等价于axis=2。同理,axis=-2代表倒数第二个维度,对于三维矩阵拼接来说,axis=-2等价于axis=1。
一般在维度非常高的情况下,我们想在最'高'的维度进行拼接,一般就直接用countdown机制,直接axis=-1就搞定了。
Tensorflow知识点学习的更多相关文章
- Java核心知识点学习----多线程中的阻塞队列,ArrayBlockingQueue介绍
1.什么是阻塞队列? 所谓队列,遵循的是先进先出原则(FIFO),阻塞队列,即是数据共享时,A在写数据时,B想读同一数据,那么就将发生阻塞了. 看一下线程的四种状态,首先是新创建一个线程,然后,通过s ...
- Java核心知识点学习----使用Condition控制线程通信
一.需求 实现线程间的通信,主线程循环3次后,子线程2循环2次,子线程3循环3次,然后主线程接着循环3次,如此循环3次. 即:A->B->C---A->B->C---A-> ...
- Java核心知识点学习----线程中如何创建锁和使用锁 Lock,设计一个缓存系统
理论知识很枯燥,但这些都是基本功,学完可能会忘,但等用的时候,会发觉之前的学习是非常有意义的,学习线程就是这样子的. 1.如何创建锁? Lock lock = new ReentrantLock(); ...
- (转) TensorFlow深度学习,一篇文章就够了
TensorFlow深度学习,一篇文章就够了 2016/09/22 · IT技术 · TensorFlow, 深度学习 分享到:6 原文出处: 我爱计算机 (@tobe迪豪 ) 作者: 陈迪 ...
- TensorFlow简易学习[3]:实现神经网络
TensorFlow本身是分布式机器学习框架,所以是基于深度学习的,前一篇TensorFlow简易学习[2]:实现线性回归对只一般算法的举例只是为说明TensorFlow的广泛性.本文将通过示例Ten ...
- TensorFlow深度学习,一篇文章就够了
http://blog.jobbole.com/105602/ 作者: 陈迪豪,就职小米科技,深度学习工程师,TensorFlow代码提交者. TensorFlow深度学习框架 Google不仅是大数 ...
- windows下Anaconda3配置TensorFlow深度学习库
Anaconda3(python3.6)安装tensorflow Anaconda3中安装tensorflow3是非常简单的,仅需通过 pip install tensorflow 测试代码: imp ...
- 问题集录--TensorFlow深度学习
TensorFlow深度学习框架 Google不仅是大数据和云计算的领导者,在机器学习和深度学习上也有很好的实践和积累,在2015年年底开源了内部使用的深度学习框架TensorFlow. 与Caffe ...
- 没有博士学位,照样玩转TensorFlow深度学习
教程 | 没有博士学位,照样玩转TensorFlow深度学习 机器之心2017-01-24 12:32:22 程序设计 谷歌 操作系统 阅读(362)评论(0) 选自Codelabs 机器之心编译 参 ...
随机推荐
- vsftpd 自动安装脚本
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'cpy' import os import re import sys impo ...
- mnesia的脏写和事物写的测试
在之前的文章中,测试了脏读和事物读之间性能差别,下面测试下脏写和事物写之间的性能差别: 代码如下: -module(mnesia_text). -compile(export_all). -recor ...
- 调整图像的尺寸 - cvResize() 函数实现
前言 有时会碰到一张图片太大了,想将它缩小.本文将讲解一个很好用的函数解决这个问题. 图像尺寸调整函数 cvResize() // 图像尺寸调整函数 void Resize ( const CvArr ...
- CPU接口练习 (仅以此程序证明 某个同学真的有毒!有毒!!!)
1创建接口 package lianxi; public interface ICpu { public boolean neiCun();//内存接口 } 2创建一个类 连接这个接口 package ...
- 再看GS接包过程
再看GS接包过程 bool GameServer::ProcessLoop(packet& rPkt) { if(false == m_spDataLayer->Recv(rPkt)) ...
- HDU 5343 MZL's Circle Zhou 后缀自动机+DP
MZL's Circle Zhou Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Othe ...
- 【BZOJ1097】[POI2007]旅游景点atr 最短路+状压DP
[BZOJ1097][POI2007]旅游景点atr Description FGD想从成都去上海旅游.在旅途中他希望经过一些城市并在那里欣赏风景,品尝风味小吃或者做其他的有趣的事情.经过这些城市的顺 ...
- mysql 二:操作表
的存储.在操作表之前,首先要用选定数据库,因为表都是建立在对应的数据库里面的.在这里我们使用之前建立的test数据库 mysql> use test; Database changed 创建表的 ...
- cocos2d-x中对象的位置,旋转,缩放
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/cuit/article/details/26729633 分为两种: 缓动.IntervalActi ...
- [容易]Fizz Buzz 问题
题目来源:http://www.lintcode.com/zh-cn/problem/fizz-buzz/