CodeForces - 357C Knight Tournament 伪并查集(区间合并)
Knight Tournament
Hooray! Berl II, the king of Berland is making a knight tournament. The king has already sent the message to all knights in the kingdom and they in turn agreed to participate in this grand event.
As for you, you're just a simple peasant. There's no surprise that you slept in this morning and were late for the tournament (it was a weekend, after all). Now you are really curious about the results of the tournament. This time the tournament in Berland went as follows:
- There are n knights participating in the tournament. Each knight was assigned his unique number — an integer from 1 to n.
- The tournament consisted of m fights, in the i-th fight the knights that were still in the game with numbers at least li and at most ri have fought for the right to continue taking part in the tournament.
- After the i-th fight among all participants of the fight only one knight won — the knight number xi, he continued participating in the tournament. Other knights left the tournament.
- The winner of the last (the m-th) fight (the knight number xm) became the winner of the tournament.
You fished out all the information about the fights from your friends. Now for each knight you want to know the name of the knight he was conquered by. We think that the knight number b was conquered by the knight number a, if there was a fight with both of these knights present and the winner was the knight number a.
Write the code that calculates for each knight, the name of the knight that beat him.
Input
The first line contains two integers n, m (2 ≤ n ≤ 3·105; 1 ≤ m ≤ 3·105) — the number of knights and the number of fights. Each of the following m lines contains three integers li, ri, xi (1 ≤ li < ri ≤ n; li ≤ xi ≤ ri) — the description of the i-th fight.
It is guaranteed that the input is correct and matches the problem statement. It is guaranteed that at least two knights took part in each battle.
Output
Print n integers. If the i-th knight lost, then the i-th number should equal the number of the knight that beat the knight number i. If the i-th knight is the winner, then the i-th number must equal 0.
Example
4 3
1 2 1
1 3 3
1 4 4
3 1 4 0
8 4
3 5 4
3 7 6
2 8 8
1 8 1
0 8 4 6 4 8 6 1
Note
Consider the first test case. Knights 1 and 2 fought the first fight and knight 1 won. Knights 1 and 3 fought the second fight and knight 3 won. The last fight was between knights 3 and 4, knight 4 won.
开始想到并查集,其实只要记录他的上一个值一次就是祖先了,所以不需要更新根节点。重点是区间合并,next起到跳跃作用,【x,y】区间中【x,z)跳到z,(z,y】跳到y+1。分别合并隔离出中间点z。
#include<stdio.h> int f[],b[],next[]; int main()
{
int n,m,x,y,z,i,j;
scanf("%d%d",&n,&m);
for(i=;i<=n;i++){
f[i]=i;
next[i]=i+;
}
for(i=;i<=m;i++){
scanf("%d%d%d",&x,&y,&z);
for(j=x;j<z;){
if(b[j]==&&j!=z){
b[j]=;
f[j]=z;
}
int t=j;
j=next[j];
next[t]=z;
}
for(j=z;j<=y;){
if(b[j]==&&j!=z){
b[j]=;
f[j]=z;
}
int t=j;
j=next[j];
next[t]=next[y];
}
}
for(i=;i<=n;i++){
if(i!=) printf(" ");
if(f[i]==i) printf("");
else printf("%d",f[i]);
}
return ;
}
CodeForces - 357C Knight Tournament 伪并查集(区间合并)的更多相关文章
- codeforces 357C Knight Tournament(set)
Description Hooray! Berl II, the king of Berland is making a knight tournament. The king has already ...
- POJ-1733 Parity game(带权并查集区间合并)
http://poj.org/problem?id=1733 题目描述 你和你的朋友玩一个游戏.你的朋友写下来一连串的0或者1.你选择一个连续的子序列然后问他,这个子序列包含1的个数是奇数还是偶数.你 ...
- HDU-3038 How Many Answers Are Wrong(带权并查集区间合并)
http://acm.hdu.edu.cn/showproblem.php?pid=3038 大致题意: 有一个区间[0,n],然后会给出你m个区间和,每次给出a,b,v,表示区间[a,b]的区间和为 ...
- POJ1456贪心(set或者并查集区间合并)
题意: 给你n商品,每个商品有自己的价值还有保质期,一天最多只能卖出去一个商品,问最大收益是多少? 思路: 比较好想的贪心,思路是这样,每一次我们肯定拿价值最大的,至于在那天拿 ...
- Codeforces 1166F 并查集 启发式合并
题意:给你一张无向图,无向图中每条边有颜色.有两种操作,一种是询问从x到y是否有双彩虹路,一种是在x到y之间添加一条颜色为z的边.双彩虹路是指:如果给这条路径的点编号,那么第i个点和第i - 1个点相 ...
- BZOJ2733[HNOI2012]永无乡——线段树合并+并查集+启发式合并
题目描述 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达 ...
- BZOJ 3673: 可持久化并查集(可持久化并查集+启发式合并)
http://www.lydsy.com/JudgeOnline/problem.php?id=3673 题意: 思路: 可持久化数组可以用可持久化线段树来实现,并查集的查询操作和原来的一般并查集操作 ...
- BZOJ 4668: 冷战 并查集启发式合并/LCT
挺好想的,最简单的方法是并查集启发式合并,加暴力跳父亲. 然而,这个代码量比较小,比较好写,所以我写了 LCT,更具挑战性. #include <cstdio> #include < ...
- [HDU 3712] Fiolki (带边权并查集+启发式合并)
[HDU 3712] Fiolki (带边权并查集+启发式合并) 题面 化学家吉丽想要配置一种神奇的药水来拯救世界. 吉丽有n种不同的液体物质,和n个药瓶(均从1到n编号).初始时,第i个瓶内装着g[ ...
随机推荐
- Django中的模板和分页
模板 在Templates中添加母版: - 母版...html 母版(master.html)中可变化的地方加入: {%block content%}{%endblock%} 在子版 (usermg. ...
- Linux中的du和df命令
现在也将前阵子学习到du/df两个命令总结一下吧.前阵子测试工作中有遇到过由于磁盘空间满导致程序无法执行到情况,所以使用了df和du两个命令. du查看目录大小,df查看磁盘使用情况.我常使用的命令( ...
- JSP 随记
jstl <c:forEach> 遍历,多个<option>时显示"全部".单个 option时,默认选中! 引入:<%@ taglib prefix ...
- 使用 sigaction 函数实现可靠信号
前言 在前文中,讲述了一个可靠信号的示例.它分成几个步骤组成( 请参考前文 ).在 Linux 系统编程中,有个方法可以将这些步骤给集成起来,让我们使用起来更加的方便.那就是调用 sigaction ...
- Android Eclipse 导入 AS Gradle AAR 库手冊
序言 这是一篇半技术类文章.众所周知如今Google主推Android Studio开发工具.而Eclipse已经被闲置一阵子了,可是Eclipse项目却还有非常多没有迁移到AS中.而如今一些新的库都 ...
- Mvc创建并注册防盗链
创建CustomHandler.JpgHandler public class JpgHandler : IHttpHandler { public void ProcessRequest(HttpC ...
- 互联网时代的精准招聘-Uber新手游有感
找工作难.招人也难.漫天的简历,全是求职者广撒网式的复制粘贴,如何找到合适的人.会认真对待职位的人?或许你须要换换思路,看看Uber新出的手机游戏能够咱啥启发. Uber在过去5年已经蹭蹭成长为估值5 ...
- EasyRTSPClient:基于live555封装的支持重连的RTSP客户端RTSPClient
今天先简单介绍一下EasyRTSPClient,后面的文章我们再仔细介绍EasyRTSPClient内部的设计过程: EasyRTSPClient:https://github.com/EasyDar ...
- java之HashMap的遍历Iterator
package com.ql_2;/* * 功能:HashMap 的使用 */import java.util.*; public class Test_2 { public static void ...
- Mac下通过命令行安装npm install -g 报错,如何解决?
1, 使用 sudo npm install -g n2, 或者 sudo chmod -R 777 /usr/local/lib,然后 npm install -g