One-Way Streets (oneway)

题目描述

Once upon a time there was a country with nn cities and mm bidirectional roads connecting  them. Technical development led to faster and larger road vehicles which presented a problem—the roads were becoming too narrow for two vehicles travelling in opposite direction. A decision to solve this problem involved turning all the roads into single-lane, one-way (unidirectional) roads.

Making the roads one-way comes at a cost because some of those pairs of cities that were previously connected might no longer be reachable after the change. The government compiled a list of important pairs of cities for which it has to be possible to start in the first city and reach the second one. Your task is to determine in which direction to direct the traffic on every road. It is guaranteed that a solution exists.

For some roads there is no choice about the direction of traffic if you want to obtain a solution. The traffic will flow from the first to the second city (right direction, indicated by letter R) or from the second city towards the first (left direction, indicated by letter L).

However, for some roads there exists a solution with this road directed left, and another (possibly different) solution with the road directed right. You should indicate such roads with a letter B for both directions.

Output a string of length jj. Its i−thi−th character should be

• RR if all solutions require the i−thi−th road to be directed right

• LL if all solutions require the i−thi−th road to be directed left

• BB if a solution exists where the i−thi−th road is directed left, and a solution also exists where the i−thi−th road is directed right

给定一张nn 个点mm条边的无向图,现在想要把这张图定向。

有pp 个限制条件,每个条件形如(xi,yi)(xi,yi),表示在新的有向图当中, xixi要能够沿着一些边走到yiyi。

现在请你求出,每条边的方向是否能够唯一确定。同时请给出这些能够唯一确定的边的方向。

输入

The first line contains the number of cities nn and the number of roads mm. The following mm lines describe the roads with pairs of numbers aiai and bibi, which indicate that there is a road between cities aiai and bibi. There can be more than one road between the same pair of cities and a road can even connect the city with itself.

The next line contains the number of pairs of cities pp that have to be reachable. The next pp lines contain pairs of cities xixi and yiyi, meaning that there has to be a way to start in city xixi and reach yiyi.

第一行两个空格隔开的正整数n,mn,m

接下来mm行,每行两个空格隔开的正整数ai,biai,bi,表示ai,biai,bi 之间有一条边。

接下来一行一个整数pp表示限制条件的个数。

接下来pp行,每行两个空格隔开的正整数xi,yixi,yi,描述一个(xi,yi(xi,yi 的限制条件。

输出

Output a string of length mm as described in the description of the task.

输出一行一个长度为mm 的字符串,表示每条边的答案:

·若第ii 条边必须得要是aiai 指向bibi 的,那么这个字符串的第ii个字符应当为 R

·若第ii条边必须得要是bibi 指向aiai 的,那么这个字符串的第ii个字符应当为 L

·否则,若第ii条边的方向无法唯一确定,那么这个字符串的第ii个字符应当为 B

样例输入

5 6
1 2
1 2
4 3
2 3
1 3
5 1
2
4 5
1 3

样例输出

BBRBBL

提示

Constraints

• 1≤n,m,p≤100,0001≤n,m,p≤100,000

• 1≤ai,bi,xi,yi≤n1≤ai,bi,xi,yi≤n

Subtask 1 (30 points)

• n,m≤1000,p≤100n,m≤1000,p≤100

Subtask 2 (30 points)

• p≤100p≤100

Subtask 3 (40 points)

• no additional constraints

Comment

Let’s show that the fifth road "1 3" can be directed in either direction. Two possible orientations of roads with different directions of the fifth road are LLRLRL and RLRRLL.

来源

ceoi2017


solution

边双显然是未知,因为正反两个方案都是合法的。

那就把边双缩成点,然后相当于每次给两个点定向。

我用的是树上倍增。

其他神犇:并查集,差分 orz

tarjan时注意重边,还有图可能是不连通的

#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#define maxn 100000
using namespace std;
int n,m,head[maxn],dfn[maxn],low[maxn],t1,t2,tot=1;
int sc,ins[maxn],zh[maxn],top,co,dy[maxn],p,fa[maxn][22],bj[maxn][22];
int deep[maxn],ans[maxn],vis[maxn];
vector<int>G[maxn];
struct node{
int u,v,nex;
}e[maxn*2];
void lj(int t1,int t2){
tot++;e[tot].u=t1;e[tot].v=t2;e[tot].nex=head[t1];head[t1]=tot;
}
void tarjan(int k,int fa){
dfn[k]=low[k]=++sc;
ins[k]=1,zh[++top]=k;
for(int i=head[k];i;i=e[i].nex){
if(i!=(fa^1)){
if(!dfn[e[i].v]){
tarjan(e[i].v,i);
low[k]=min(low[k],low[e[i].v]);
}
else if(ins[e[i].v])low[k]=min(low[k],dfn[e[i].v]);
}
}
if(low[k]==dfn[k]){
co++;
while(1){
dy[zh[top]]=co;
if(zh[top]==k){top--;break;}
top--;
}
}
}
void dfs(int k,int fath){
vis[k]=1;
fa[k][0]=fath;deep[k]=deep[fath]+1;
int sz=G[k].size();
for(int i=0;i<sz;i++){
int v=G[k][i];
if(v!=fath)dfs(v,k);
}
}
int main()
{
cin>>n>>m;
for(int i=1;i<=m;i++){
scanf("%d%d",&t1,&t2);
lj(t1,t2);lj(t2,t1);
}
for(int i=1;i<=n;i++){
if(!dfn[i])tarjan(i,0);
}
for(int i=1;i<=m;i++){
int t=i+i;int u=dy[e[t].u],v=dy[e[t].v];
if(u!=v){
G[u].push_back(v);G[v].push_back(u);
}
}
for(int i=1;i<=co;i++)if(!vis[i])dfs(i,0);
for(int j=1;j<=20;j++)
for(int i=1;i<=co;i++){
fa[i][j]=fa[fa[i][j-1]][j-1];
}
cin>>p;
for(int i=1;i<=p;i++){
scanf("%d%d",&t1,&t2);
t1=dy[t1],t2=dy[t2];
if(t1==t2)continue;
if(deep[t1]>deep[t2]){
int x=20;
while(x>=0){
if(deep[fa[t1][x]]>=deep[t2]){
bj[t1][x]=1;t1=fa[t1][x];
}
x--;
}
}
if(deep[t1]<deep[t2]){
int x=20;
while(x>=0){
if(deep[fa[t2][x]]>=deep[t1]){
bj[t2][x]=-1;t2=fa[t2][x];
}
x--;
}
}
int x=20;
while(x>=0){
if(fa[t1][x]!=fa[t2][x]){
bj[t1][x]=1,bj[t2][x]=-1;
t1=fa[t1][x],t2=fa[t2][x];
}
x--;
}
if(t1!=t2)bj[t1][0]=1,bj[t2][0]=-1;
}
for(int j=20;j>0;j--){
for(int i=1;i<=co;i++){
if(bj[i][j]!=0){
bj[i][j-1]=bj[i][j];
bj[fa[i][j-1]][j-1]=bj[i][j];
}
}
}
for(int i=1;i<=m;i++){
int t=i+i;int u=dy[e[t].u],v=dy[e[t].v];
if(u!=v){
if(fa[u][0]==v)ans[i]=bj[u][0];
else ans[i]=-bj[v][0];
}
}
for(int i=1;i<=m;i++){
if(ans[i]==1)printf("R");
if(ans[i]==0)printf("B");
if(ans[i]==-1)printf("L");
}
return 0;
}

One-Way Streets (oneway)的更多相关文章

  1. Luogu4652 CEOI2017 One-Way Streets 树上差分

    传送门 题意:给出$N$个点.$M$条无向边的图,现在你需要给它定向,并满足$Q$个条件:每个条件形如$(x_i,y_i)$,表示定向之后需要存在路径从$x_i$走向$y_i$.问每条边是否都有唯一定 ...

  2. 【刷题】LOJ 2480 「CEOI2017」One-Way Streets

    题目描述 给定一张 \(n\) 个点 \(m\) 条边的无向图,现在想要把这张图定向. 有 \(p\) 个限制条件,每个条件形如 \((xi,yi)\) ,表示在新的有向图当中,\(x_i\) 要能够 ...

  3. loj2480 [CEOI2017]One-Way Streets 边双+树上差分

    边双无法确定 缩完边双就是一棵树 树上差分随意弄一下吧... #include <vector> #include <cstdio> #include <cstring& ...

  4. [CEOI2017]One-Way Streets

    题目大意: 给你一个无向图,现在告诉你一些点对(u,v), 要你在保证从u到v的所有路径都不变的情况下,尽可能把所有的边变成单向边, 问你可以唯一确定哪些边的方向,以及方向是从u到v还是从v到u. 思 ...

  5. @loj - 2480@ 「CEOI2017」One-Way Streets

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一张 n 个点 m 条边的无向图,现在想要把这张图定向. 有 ...

  6. UVALive 2664 One-way traffic

    One-way traffic Time Limit: 3000ms Memory Limit: 131072KB This problem will be judged on UVALive. Or ...

  7. Java实现One-way traffic(单向交通)

    One-way traffic In a certain town there are n intersections connected by two- and one-way streets. T ...

  8. codeforces 723E:One-Way Reform

    Description There are n cities and m two-way roads in Berland, each road connects two cities. It is ...

  9. WCF分布式开发步步为赢(10):请求应答(Request-Reply)、单向操作(One-Way)、回调操作(Call Back).

    WCF除了支持经典的请求应答(Request-Reply)模式外,还提供了什么操作调用模式,他们有什么不同以及我们如何在开发中使用这些操作调用模式.今天本节文章里会详细介绍.WCF分布式开发步步为赢( ...

随机推荐

  1. Windows服务调试

    Windows 服务(附服务开发辅助工具) 转: http://www.cnblogs.com/BoyXiao/archive/2011/08/07/2130208.html 近来在 Windows ...

  2. C#赋值运算符

    一.C#赋值运算符 C#语言的赋值运算符用于将一个数据赋予一个变量.属性或者引用.数据可以是常量.变量或者表达式. 1. 简单赋值 “=”操作符被称为简单赋值操作符.在一个简单赋值中,右操作数必须为某 ...

  3. vue2.0在页面中自定义组件模块,以及页面与组件之间的数据传递

    1,在初始文件index.html中加入要引入的模块,注意驼峰命名的方式(我就是没写成驼峰,报错) <!DOCTYPE html> <html> <head> &l ...

  4. quartz调度

    http://www.cnblogs.com/lzrabbit/archive/2012/04/14/2446942.html

  5. 【计数】cf223C. Partial Sums

    考试时候遇到这种题只会找规律 You've got an array a, consisting of n integers. The array elements are indexed from ...

  6. 大蟒蛇肚子的"风暴"

    遇到了数据库连接数不足的问题,一般情况下会预留一些会话增加的情况,但在一些特殊情况下如连接风暴(logon storm), 如果在监听中没有做rate限流,对数据库来说巨大的冲击可能会导致数据库Han ...

  7. CentOS7安装Nginx、MySQL、PHP

    之前才网上找了好多文章,但是配置总会出错,后来傻傻的发现官方文档都有的,当然配合网上文章说明更好,因此本文只说一个大概 安装PHP 官方配置 配置用户和用户组,需要有根目录权限 vim /usr/lo ...

  8. JZOJ 3463. 【NOIP2013模拟联考5】军训

    3463. [NOIP2013模拟联考5]军训(training) (Standard IO) Time Limits: 2000 ms  Memory Limits: 262144 KB  Deta ...

  9. kuangbin 最短路集合

    Til the Cows Come Home poj-2387 #include<iostream> #include<cstdio> #include<algorith ...

  10. HDU:4417-Super Mario(离线线段树)

    Super Mario Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Problem ...