One-Way Streets (oneway)
One-Way Streets (oneway)
题目描述
Once upon a time there was a country with nn cities and mm bidirectional roads connecting them. Technical development led to faster and larger road vehicles which presented a problem—the roads were becoming too narrow for two vehicles travelling in opposite direction. A decision to solve this problem involved turning all the roads into single-lane, one-way (unidirectional) roads.
Making the roads one-way comes at a cost because some of those pairs of cities that were previously connected might no longer be reachable after the change. The government compiled a list of important pairs of cities for which it has to be possible to start in the first city and reach the second one. Your task is to determine in which direction to direct the traffic on every road. It is guaranteed that a solution exists.
For some roads there is no choice about the direction of traffic if you want to obtain a solution. The traffic will flow from the first to the second city (right direction, indicated by letter R) or from the second city towards the first (left direction, indicated by letter L).
However, for some roads there exists a solution with this road directed left, and another (possibly different) solution with the road directed right. You should indicate such roads with a letter B for both directions.
Output a string of length jj. Its i−thi−th character should be
• RR if all solutions require the i−thi−th road to be directed right
• LL if all solutions require the i−thi−th road to be directed left
• BB if a solution exists where the i−thi−th road is directed left, and a solution also exists where the i−thi−th road is directed right
给定一张nn 个点mm条边的无向图,现在想要把这张图定向。
有pp 个限制条件,每个条件形如(xi,yi)(xi,yi),表示在新的有向图当中, xixi要能够沿着一些边走到yiyi。
现在请你求出,每条边的方向是否能够唯一确定。同时请给出这些能够唯一确定的边的方向。
输入
The first line contains the number of cities nn and the number of roads mm. The following mm lines describe the roads with pairs of numbers aiai and bibi, which indicate that there is a road between cities aiai and bibi. There can be more than one road between the same pair of cities and a road can even connect the city with itself.
The next line contains the number of pairs of cities pp that have to be reachable. The next pp lines contain pairs of cities xixi and yiyi, meaning that there has to be a way to start in city xixi and reach yiyi.
第一行两个空格隔开的正整数n,mn,m
接下来mm行,每行两个空格隔开的正整数ai,biai,bi,表示ai,biai,bi 之间有一条边。
接下来一行一个整数pp表示限制条件的个数。
接下来pp行,每行两个空格隔开的正整数xi,yixi,yi,描述一个(xi,yi(xi,yi 的限制条件。
输出
Output a string of length mm as described in the description of the task.
输出一行一个长度为mm 的字符串,表示每条边的答案:
·若第ii 条边必须得要是aiai 指向bibi 的,那么这个字符串的第ii个字符应当为 R;
·若第ii条边必须得要是bibi 指向aiai 的,那么这个字符串的第ii个字符应当为 L;
·否则,若第ii条边的方向无法唯一确定,那么这个字符串的第ii个字符应当为 B。
样例输入
5 6
1 2
1 2
4 3
2 3
1 3
5 1
2
4 5
1 3
样例输出
BBRBBL
提示
Constraints
• 1≤n,m,p≤100,0001≤n,m,p≤100,000
• 1≤ai,bi,xi,yi≤n1≤ai,bi,xi,yi≤n
Subtask 1 (30 points)
• n,m≤1000,p≤100n,m≤1000,p≤100
Subtask 2 (30 points)
• p≤100p≤100
Subtask 3 (40 points)
• no additional constraints
Comment
Let’s show that the fifth road "1 3" can be directed in either direction. Two possible orientations of roads with different directions of the fifth road are LLRLRL and RLRRLL.
来源
solution
边双显然是未知,因为正反两个方案都是合法的。
那就把边双缩成点,然后相当于每次给两个点定向。
我用的是树上倍增。
其他神犇:并查集,差分 orz
tarjan时注意重边,还有图可能是不连通的
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#define maxn 100000
using namespace std;
int n,m,head[maxn],dfn[maxn],low[maxn],t1,t2,tot=1;
int sc,ins[maxn],zh[maxn],top,co,dy[maxn],p,fa[maxn][22],bj[maxn][22];
int deep[maxn],ans[maxn],vis[maxn];
vector<int>G[maxn];
struct node{
int u,v,nex;
}e[maxn*2];
void lj(int t1,int t2){
tot++;e[tot].u=t1;e[tot].v=t2;e[tot].nex=head[t1];head[t1]=tot;
}
void tarjan(int k,int fa){
dfn[k]=low[k]=++sc;
ins[k]=1,zh[++top]=k;
for(int i=head[k];i;i=e[i].nex){
if(i!=(fa^1)){
if(!dfn[e[i].v]){
tarjan(e[i].v,i);
low[k]=min(low[k],low[e[i].v]);
}
else if(ins[e[i].v])low[k]=min(low[k],dfn[e[i].v]);
}
}
if(low[k]==dfn[k]){
co++;
while(1){
dy[zh[top]]=co;
if(zh[top]==k){top--;break;}
top--;
}
}
}
void dfs(int k,int fath){
vis[k]=1;
fa[k][0]=fath;deep[k]=deep[fath]+1;
int sz=G[k].size();
for(int i=0;i<sz;i++){
int v=G[k][i];
if(v!=fath)dfs(v,k);
}
}
int main()
{
cin>>n>>m;
for(int i=1;i<=m;i++){
scanf("%d%d",&t1,&t2);
lj(t1,t2);lj(t2,t1);
}
for(int i=1;i<=n;i++){
if(!dfn[i])tarjan(i,0);
}
for(int i=1;i<=m;i++){
int t=i+i;int u=dy[e[t].u],v=dy[e[t].v];
if(u!=v){
G[u].push_back(v);G[v].push_back(u);
}
}
for(int i=1;i<=co;i++)if(!vis[i])dfs(i,0);
for(int j=1;j<=20;j++)
for(int i=1;i<=co;i++){
fa[i][j]=fa[fa[i][j-1]][j-1];
}
cin>>p;
for(int i=1;i<=p;i++){
scanf("%d%d",&t1,&t2);
t1=dy[t1],t2=dy[t2];
if(t1==t2)continue;
if(deep[t1]>deep[t2]){
int x=20;
while(x>=0){
if(deep[fa[t1][x]]>=deep[t2]){
bj[t1][x]=1;t1=fa[t1][x];
}
x--;
}
}
if(deep[t1]<deep[t2]){
int x=20;
while(x>=0){
if(deep[fa[t2][x]]>=deep[t1]){
bj[t2][x]=-1;t2=fa[t2][x];
}
x--;
}
}
int x=20;
while(x>=0){
if(fa[t1][x]!=fa[t2][x]){
bj[t1][x]=1,bj[t2][x]=-1;
t1=fa[t1][x],t2=fa[t2][x];
}
x--;
}
if(t1!=t2)bj[t1][0]=1,bj[t2][0]=-1;
}
for(int j=20;j>0;j--){
for(int i=1;i<=co;i++){
if(bj[i][j]!=0){
bj[i][j-1]=bj[i][j];
bj[fa[i][j-1]][j-1]=bj[i][j];
}
}
}
for(int i=1;i<=m;i++){
int t=i+i;int u=dy[e[t].u],v=dy[e[t].v];
if(u!=v){
if(fa[u][0]==v)ans[i]=bj[u][0];
else ans[i]=-bj[v][0];
}
}
for(int i=1;i<=m;i++){
if(ans[i]==1)printf("R");
if(ans[i]==0)printf("B");
if(ans[i]==-1)printf("L");
}
return 0;
}
One-Way Streets (oneway)的更多相关文章
- Luogu4652 CEOI2017 One-Way Streets 树上差分
传送门 题意:给出$N$个点.$M$条无向边的图,现在你需要给它定向,并满足$Q$个条件:每个条件形如$(x_i,y_i)$,表示定向之后需要存在路径从$x_i$走向$y_i$.问每条边是否都有唯一定 ...
- 【刷题】LOJ 2480 「CEOI2017」One-Way Streets
题目描述 给定一张 \(n\) 个点 \(m\) 条边的无向图,现在想要把这张图定向. 有 \(p\) 个限制条件,每个条件形如 \((xi,yi)\) ,表示在新的有向图当中,\(x_i\) 要能够 ...
- loj2480 [CEOI2017]One-Way Streets 边双+树上差分
边双无法确定 缩完边双就是一棵树 树上差分随意弄一下吧... #include <vector> #include <cstdio> #include <cstring& ...
- [CEOI2017]One-Way Streets
题目大意: 给你一个无向图,现在告诉你一些点对(u,v), 要你在保证从u到v的所有路径都不变的情况下,尽可能把所有的边变成单向边, 问你可以唯一确定哪些边的方向,以及方向是从u到v还是从v到u. 思 ...
- @loj - 2480@ 「CEOI2017」One-Way Streets
目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一张 n 个点 m 条边的无向图,现在想要把这张图定向. 有 ...
- UVALive 2664 One-way traffic
One-way traffic Time Limit: 3000ms Memory Limit: 131072KB This problem will be judged on UVALive. Or ...
- Java实现One-way traffic(单向交通)
One-way traffic In a certain town there are n intersections connected by two- and one-way streets. T ...
- codeforces 723E:One-Way Reform
Description There are n cities and m two-way roads in Berland, each road connects two cities. It is ...
- WCF分布式开发步步为赢(10):请求应答(Request-Reply)、单向操作(One-Way)、回调操作(Call Back).
WCF除了支持经典的请求应答(Request-Reply)模式外,还提供了什么操作调用模式,他们有什么不同以及我们如何在开发中使用这些操作调用模式.今天本节文章里会详细介绍.WCF分布式开发步步为赢( ...
随机推荐
- 回归树的原理及Python实现
大名鼎鼎的 GBDT 算法就是用回归树组合而成的.本文就回归树的基本原理进行讲解,并手把手.肩并肩地带您实现这一算法. 1. 原理篇 1.1 最简单的模型 如果预测某个连续变量的大小,最简单的模型之一 ...
- java,从键盘输入个数不确定的整数,并判断输入的正数和负数的个数,输入0时结束程序。
package study01; import java.util.Scanner; public class Test { public static void main(String[] args ...
- 数据存储之使用MongoDB数据库存储数据
安装MongoDB环境: 1.官网下载:https://www.mongodb.com/download-center#community 2.MongoDB可视化工具compass下载https:/ ...
- Python入门第一课——Python的起源、发展与前景!
我们在做任何一件事情之前,我们都会通过各种渠道去搜集事情的信息,了解事情的来龙去脉,学习一门编程语言也是如此,只有知根知底,我们才能有明确的方向和目标,以及底气去完成这件事情,今天我带大家来看看Pyt ...
- 按位与&、或|、异或^等运算方法
(转载) 按位与运算符(&) 参加运算的两个数据,按二进制位进行“与”运算. 运算规则:0&0=0; 0&1=0; 1&0=0; 1&1=1; ...
- Linux文件属性之文件权限介绍
1)用ls -li 查看文件列表字段 红色代表的是inode 黄色代表的是文件权限 黄色里面的第一个 - 表示文件的类型(普通类型文件) d 表示目录(directory) l 表示链接文件(link ...
- 用私有构造器或者枚举类型强化Singleton属性
1.Singleton指仅仅被实例化一次的类.Singleton通常被用来代表那些本质上唯一的系统组件,如窗口管理器或者文件系统.使类称为Singleton会使它的客户端调试变的十分困难,因为无法给S ...
- Go语言之并发编程(四)
同步 Go 程序可以使用通道进行多个 goroutine 间的数据交换,但这仅仅是数据同步中的一种方法.通道内部的实现依然使用了各种锁,因此优雅代码的代价是性能.在某些轻量级的场合,原子访问(atom ...
- cf984e Elevator
ref我好菜啊 #include <iostream> #include <cstring> #include <cstdio> #include <cmat ...
- IOS应用程序开发流程
应用程序开发流程 1.IOS开发需要思考的问题 用户是谁?不同应用程序的内容和用户体验大不相同,这取决于想要编写的是什么应用程序,它可能是儿童游戏,也可能是待办事项列表应用程序,又或者是测试自己学习成 ...