题面

传送门

思路

一个数字能且只能匹配一次

这引导我们思考:一次代表什么?代表用到一定上限(b数组)就不能再用,同时每用一次会产生价值(c数组)

上限?价值?网络流!

把一次匹配设为一点流量,那产生的价值不就是费用了吗?

我们考虑把一种数字抽象成一个点,可以匹配的数字之间连边,费用为c[i]*c[j],流量上限为.....

等等,流量上限怎么设?

而且还有一个问题:这里的匹配是双向的,虽然可以$O\left(n^2\right)$求出所有匹配对,但是网络流要求是单向边啊!

别急,我们先来分析一下两个满足匹配条件的数,有什么性质

设$i=p\ast j$,其中p是一个质数

那我们考虑$i$和$j$的质因数分解,会发现:它们俩分解出的质因数个数之间正好差一!

这说明了什么?

这说明匹配只有可能在质因数个数奇偶性不同的数对之间存在,而如果根据质因数个数的奇偶性把数分成两组,那么所有边都在两组之间!

这是什么?二分图啊!

那么我们就可轻易把每条边定向成从奇数侧到偶数侧了!

接下来的事就简单了:我们建立超级源S和超级汇T,从S连边到所有质因数个数为奇数的点i,费用为0,容量为b[i],质因数个数为偶数的点连到T,类似

这样,我们也一同限制了每个点最多流出去不超过b[i]的流量,也就是不发生超过b[i]次和这个数字有关的匹配

因此对于原图中的可行匹配,只要连边,费用为c[i]*c[j],流量上限inf

跑最大费用最大流......等等好像不行?这道题是要求费用非负时的最大流量啊......

别急,我们来贪心一波

我们每次在图中做一个spfa,找到费用最大(最长)的增广路,设它的总长度(费用)为maxn,同时设当前总费用为ans

如果maxn<-ans,那么即使加上1的流量,总费用也负数了,这个时候结束循环,输出总流量flow即可

否则,如果maxn>0,那么非常高兴,我们随便加,流量越多越好

如果maxn<0,那么也没有问题,我们只要令流的流量为$min(limit,ans/(-maxn))$,其中limit为当前增广路的流量上限

这样一直循环,直到因为上面的原因跳出,或者图不连通了为止,输出总流量flow,就是最大匹配数了

贪心的证明很显然,我们每次都是取最优走,而且后面的决策肯定没有我优,就证完了

Code:

写的时候注意细节啊......这题细节贼多,一不小心就除0或者mod0了,而且实现分解质因数的时候注意,如果一个数x到了sqrt(x)都还没有一个质因数,那么它肯定是个质数

因此我们只要筛1e5的素数就够了

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cassert>
#define inf 1e15
#define ll long long
using namespace std;
inline ll read(){
ll re=0,flag=1;char ch=getchar();
while(ch>'9'||ch<'0'){
if(ch=='-') flag=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9') re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
return re*flag;
}
ll cnt=-1,ans,flow,first[210],dis[210],vis[210],limit[210],pre[210];
struct edge{
ll to,next,w,cap;
}a[100010];
inline void add(ll u,ll v,ll w,ll cap){
a[++cnt]=(edge){v,first[u],w,cap};first[u]=cnt;
a[++cnt]=(edge){u,first[v],-w,0};first[v]=cnt;
}
bool spfa(ll s,ll t){
ll q[5010]={0},head=0,tail=1,u,v,w,i;
for(i=s;i<=t;i++) dis[i]=-inf;
memset(vis,0,sizeof(vis));
memset(pre,-1,sizeof(pre));memset(limit,0,sizeof(limit));
q[0]=s;vis[s]=1;dis[s]=0;limit[s]=inf;
while(head<tail){
u=q[head++];vis[u]=0;
for(i=first[u];~i;i=a[i].next){
v=a[i].to;w=a[i].w;
if(a[i].cap&&(dis[v]<dis[u]+w)){//注意是最长路
dis[v]=dis[u]+w;
limit[v]=min(limit[u],a[i].cap);
pre[v]=i;
if(!vis[v]) q[tail++]=v,vis[v]=1;
}
}
}
return dis[t]!=-inf;
}
ll n,A[210],B[210],C[210],col[210];
ll tot=0,pri[100010],v[100010]={0};
void init(){//线筛
ll i,j,k;v[1]=1;
for(i=2;i<=100000;i++){
if(!v[i]) pri[++tot]=i;
for(j=1;j<=tot;j++){
k=i*pri[j];if(k>100000) break;
v[k]=1;
if((i%pri[j])==0) break;
}
}
}
ll cntprime(ll x){
ll re=0,c=1;
while(x>1&&c<=tot){
while((x%pri[c])==0) x/=pri[c],re++;
c++;
}
if((c==tot+1)&&(x>1)) return 1;//处理特殊情况
return re;
}
int main(){
memset(first,-1,sizeof(first));
ll i,j;init();
n=read();
for(i=1;i<=n;i++) A[i]=read(),col[i]=cntprime(A[i]);
for(i=1;i<=n;i++){
B[i]=read();
if(col[i]%2) add(0,i,0,B[i]);
else add(i,n+1,0,B[i]);
}
for(i=1;i<=n;i++) C[i]=read();
for(i=1;i<=n;i++){
for(j=i+1;j<=n;j++){
if((((A[i]%A[j])==0)&&(col[i]==col[j]+1))||(((A[j]%A[i])==0)&&(col[j]==col[i]+1))){
if(col[i]%2) add(i,j,C[i]*C[j],inf);
else add(j,i,C[i]*C[j],inf);
}
}
}
ll tmp,u;
while(1){
if(!spfa(0,n+1)) break;
if(dis[n+1]+ans<0) break;
if(dis[n+1]>=0) tmp=limit[n+1];//注意这里>=不要写成>......我被这个坑了1h啊啊啊啊
else tmp=min(limit[n+1],ans/(-dis[n+1]));
ans+=dis[n+1]*tmp;flow+=tmp;
for(u=n+1;~pre[u];u=a[pre[u]^1].to){
a[pre[u]].cap-=tmp;a[pre[u]^1].cap+=tmp;
}
}
printf("%lld\n",flow);
}

[SDOI2016][bzoj4514] 数字配对 [费用流]的更多相关文章

  1. 【BZOJ4514】【SDOI2016】数字配对 [费用流]

    数字配对 Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 有 n 种数字,第 i 种数字是 ...

  2. [bzoj4514]数字配对[费用流]

    今年SDOI的题,看到他们在做,看到过了一百多个人,然后就被虐惨啦... 果然考试的时候还是打不了高端算法,调了...几天 默默地yy了一个费用流构图: 源连所有点,配对的点连啊,所有点连汇... 后 ...

  3. 【BZOJ4514】[Sdoi2016]数字配对 费用流

    [BZOJ4514][Sdoi2016]数字配对 Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ...

  4. bzoj4514: [Sdoi2016]数字配对--费用流

    看了一眼题目&数据范围,觉得应该是带下界的费用流 原来想拆点变成二分图,能配对的连边,跑二分图,可行性未知 后来看到另外一种解法.. 符合匹配要求的数要满足:质因子的个数相差为1,且两者可整除 ...

  5. BZOJ 4514: [Sdoi2016]数字配对 [费用流 数论]

    4514: [Sdoi2016]数字配对 题意: 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数 ...

  6. BZOJ.4514.[SDOI2016]数字配对(费用流SPFA 二分图)

    BZOJ 洛谷 \(Solution\) 很显然的建二分图后跑最大费用流,但有个问题是一个数是只能用一次的,这样二分图两部分都有这个数. 那么就用两倍的.如果\(i\)可以向\(j'\)连边,\(j\ ...

  7. 【BZOJ 4514】[Sdoi2016]数字配对 费用流

    利用spfa流的性质,我直接拆两半,正解分奇偶(妙),而且判断是否整除且质数我用的是暴力根号,整洁判断质数个数差一(其他非spfa流怎么做?) #include <cstdio> #inc ...

  8. 4514: [Sdoi2016]数字配对 费用流

    链接 https://www.lydsy.com/JudgeOnline/problem.php?id=4514 思路 EK直接贪心做 <0的时候加上剩余返回 二分图a->b的时候 把b- ...

  9. [SDOI2016 Round1] 数字配对

    COGS 2221. [SDOI2016 Round1] 数字配对 http://www.cogs.pro/cogs/problem/problem.php?pid=2221 ★★★   输入文件:m ...

随机推荐

  1. 2018.7.1 css项目之模仿满屋花首页css+idv布局实现

    可以分开写 <!DOCTYPE html> <html lang="zh"> <head> <meta charset="UTF ...

  2. 文件系统 - Linux 支持的文件系统类型

    NAME 文件系统 - Linux 支持的文件系统类型:minix, ext, ext2, xia, msdos, umsdos, vfat, proc, nfs, iso9660, hpfs, sy ...

  3. 阿里云服务器下安装LAMP环境(CentOS Linux 6.3) 安装与配置 php

    下面我们一起为服务器安装 PHP,在使用 yum 安装软件包的时候,yum 会去默认的资源库里查看我们要安装的软件包,然后到指定的服务器上下载并安装. 但是有的时候,我们要安装的软件包并没有包含在默认 ...

  4. 后台调用前台js

    WEB后台代码调用前台JS(两种方式). 1   这种方式只能调用简单的JS代码.不能调用自定义的函数. string jss = "<script language='javascr ...

  5. 学习笔记 | java反序列化漏洞分析

    java反序列化漏洞是与java相关的漏洞中最常见的一种,也是网络安全工作者关注的重点.在cve中搜索关键字serialized共有174条记录,其中83条与java有关:搜索deserialized ...

  6. 国产中标麒麟Linux部署dotnet core 环境并运行项目 (二) 部署运行控制台项目

    背景 在上一篇文章安装dotnet core,已经安装好dotnet core了.之前只是安装成功了dotnet, 输入dotnet --info,可以确认安装成功了,但是在运行代码时,还是报错了,本 ...

  7. 转载:jsonp详解

    json相信大家都用的多,jsonp我就一直没有机会用到,但也经常看到,只知道是“用来跨域的”,一直不知道具体是个什么东西.今天总算搞明白了.下面一步步来搞清楚jsonp是个什么玩意. 同源策略 首先 ...

  8. mysql安装记录

    一.创建mysql用户 useradd mysql 二.解压 tar -zxvf mysql-5.6.38.tar.gz 三.安装依赖包 yum install -y ncurses-devel li ...

  9. 作业hashlib题目

    '''1.编写用户认证功能,要求如下 1.1.对用户密码加盐处理 1.2.用户名与密文密码存成字典,是以json格式存到文件中的 1.3.要求密用户输入明文密码,但程序中验证的是密文'''import ...

  10. hprose 1.0(rpc 框架) - 关于跨域和P3P的声明

    private function sendHeader($context) { if ($this->onSendHeader !== null) { $sendHeader = $this-& ...