原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4587

TWO NODES

Time Limit: 24000/12000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 1448    Accepted Submission(s): 441

Problem Description
Suppose that G is an undirected graph, and the value of stab is defined as follows:

Among the expression,G-i, -j is the remainder after removing node i, node j and all edges that are directly relevant to the previous two nodes. cntCompent is the number of connected components of X independently.
Thus, given a certain undirected graph G, you are supposed to calculating the value of stab.
 
Input
The input will contain the description of several graphs. For each graph, the description consist of an integer N for the number of nodes, an integer M for the number of edges, and M pairs of integers for edges (3<=N,M<=5000).
Please note that the endpoints of edge is marked in the range of [0,N-1], and input cases ends with EOF.
 
Output
For each graph in the input, you should output the value of stab.
 
Sample Input
4 5
0 1
1 2
2 3
3 0
0 2
 
Sample Output
2
 
Source
 
Recommend
zhuyuanchen520

题意

给你个图,问你去掉两个点之后能有最多多少连通块。

题解

先枚举其中一个点,然后在剩下的点中求割点,Tarjan的时候统计一下每个割点分割几个连通块,取个最大的割点,然后再dfs一次求连通块个数。

代码

#include<cstdio>
#include<iostream>
#include<vector>
#include<cstring>
#include<algorithm>
#define MAX_N 5555
using namespace std; vector<int> G[MAX_N];
bool vis[MAX_N];
int dfn[MAX_N],low[MAX_N],ind=; int cut[MAX_N]; int node; void Tarjan(int u,int p){
int child=;
dfn[u]=low[u]=++ind;
vis[u]=;
for(int i=;i<G[u].size();i++){
int v=G[u][i];
if(v==p||v==node)continue;
if(!vis[v]){
Tarjan(v,u);
low[u]=min(low[v],low[u]);
child++;
if((p==-&&child>)||(p!=-&&low[v]>=dfn[u]))
cut[u]++;
}
else
low[u]=min(dfn[v],low[u]);
}
} int n,m; void init(){
for(int i=;i<=n;i++)G[i].clear();
ind=;
memset(vis,,sizeof(vis));
memset(cut,,sizeof(cut));
} bool used[MAX_N];
int cu;
void dfs(int u,int p){
if(u==p||used[u]||u==node||u==cu)return;
used[u]=;
for(int i=;i<G[u].size();i++)dfs(G[u][i],u);
} int main(){
while(scanf("%d%d",&n,&m)==){
int stab=;
init();
int u,v;
for(int i=;i<m;i++) {
scanf("%d%d", &u, &v);
G[u].push_back(v);
G[v].push_back(u);
}
for(int i=;i<n;i++){
node=i;
memset(vis,,sizeof(vis));
ind=;
memset(cut,,sizeof(cut));
for(int j=;j<n;j++)
if((!vis[j])&&j!=node)
Tarjan(j,-);
int maxC=;
for(int j=;j<n;j++)
if(j!=node&&cut[j]>=maxC){
cu=j;
maxC=cut[j];
}
int ans=;
memset(used,,sizeof(used));
for(int j=;j<n;j++)
if((!used[j])&&j!=node&&j!=cu){
dfs(j,-);
ans++;
}
stab=max(stab,ans);
}
printf("%d\n",stab);
} return ;
}

HDU 4587 TWO NODES 枚举+割点的更多相关文章

  1. HDU 4587 TWO NODES(割点)(2013 ACM-ICPC南京赛区全国邀请赛)

    Description Suppose that G is an undirected graph, and the value of stab is defined as follows: Amon ...

  2. HDU 4587 TWO NODES 割点

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4587 题意: 删除两个点,使连通块的数目最大化 题解: 枚举删除第一个点,然后对删除了第一个点的图跑 ...

  3. HDU - 4587 TWO NODES (图的割点)

    Suppose that G is an undirected graph, and the value of stab is defined as follows: Among the expres ...

  4. HDU 4587 TWO NODES(割两个点的最大连通分支数)

    http://acm.hdu.edu.cn/showproblem.php?pid=4587 题意: 给一图,求割去两个点后所能形成的最大连通分支数. 思路: 对于这种情况,第一个只能枚举,然后在删除 ...

  5. hdu 4587 推断孤立点+割点+ 删除点之后,剩下多少连通分量

    做了非常久...... 题目链接:  http://acm.hdu.edu.cn/showproblem.php?pid=4587 先枚举删除的第一个点,第二个点就是找割点.没有割点当然也有答案 学到 ...

  6. hdu 4587(割点的应用)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4587 思路:题目的意思很简单,就是删除任意2个节点以及关联的边,求图的最大连通分量数.我们知道删除割点 ...

  7. HDU 4587 B - TWO NODES tarjan

    B - TWO NODESTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/contest/view ...

  8. hdu 4587 2013南京邀请赛B题/ / 求割点后连通分量数变形。

    题意:求一个无向图的,去掉两个不同的点后最多有几个连通分量. 思路:枚举每个点,假设去掉该点,然后对图求割点后连通分量数,更新最大的即可.算法相对简单,但是注意几个细节: 1:原图可能不连通. 2:有 ...

  9. hdu 4587(枚举+割顶)

    TWO NODES Time Limit: 24000/12000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total ...

随机推荐

  1. LeetCode(238) Product of Array Except Self

    题目 Given an array of n integers where n > 1, nums, return an array output such that output[i] is ...

  2. #1 add life to static pages && connect to MySQL

    由于实验室 Project 中需要用到PHP, 之前也没接触过 PHP, 因此把 编程入门 <Head Fist PHP & MySQL >找来花了四五天快速过了一遍. 现在想把书 ...

  3. 可持久化treap(FHQ treap)

    FHQ treap 的整理 treap = tree + heap,即同时满足二叉搜索树和堆的性质. 为了使树尽可能的保证两边的大小平衡,所以有一个key值,使他满足堆得性质,来维护树的平衡,key值 ...

  4. 03011_HttpServletRequest

    1.HttpServletRequest概述 (1)我们在创建Servlet时会覆盖service()方法,或doGet()/doPost(),这些方法都有两个参数,一个为代表请求的request和代 ...

  5. nuc 第二届山西省大学生程序设计大赛 魔力手环

    problem 很妙啊--发现状态转移矩阵每一行都可以由上一行平移得到,每次只算第一行然后平移,\(O(n^3)\) 就变成了 \(O(n^2)\). #include <iostream> ...

  6. MFC自绘按钮的实现,按钮动态效果

    最近项目需要实现按钮的动态效果,多方学习,现在终于能实现一些功能了. 过程如下: 第一,新建一MFC对话框应用程序. 第二,删除自带按钮,并添加两个按钮,button1,button2,ID为IDB_ ...

  7. MySQL常见数据库引擎及比较?

    一:MySQL存储引擎简介 MySQL有多种存储引擎,每种存储引擎有各自的优缺点,大家可以择优选择使用:MyISAM.InnoDB.MERGE.MEMORY(HEAP).BDB(BerkeleyDB) ...

  8. day01_06.比较运算符

    >  >=  =  <  <=  != == ===  !== 凡运算,必有运算结果,比较运算符的运算结果是布尔值 ==和===的区别 <?php $c = ( 3 == ...

  9. install and config redis on ubuntu14.04

    1.installation: (1)download redis from http://redis.io/download (2)installation: $ tar -xvf redis-3. ...

  10. AtCoder Grand Contest 022

    A - Diverse Word Time limit : 2sec / Memory limit : 256MB Score : 300 points Problem Statement Gotou ...