2016集训测试赛(二十六)Problem A: bar

Solution
首先审清题意, 这里要求的是子串而不是子序列...
我们考虑用1表示p, -1表示j. 用sum[i]表示字符串前\(i\)的前缀和. 则我们考虑一个字符串\([L, R]\)有什么要求: \(\forall x \in [L, R]\)满足\(sum[x] \ge sum[L - 1]\).
我们分别从前往后和从后往前求出以每个位置为开头的最长合法子串, 然后扔进树状数组里面查询即可.
至于怎么求以每个位置为开头最长合法子串, 我们考虑用一个单调栈来维护: 从前往后扫每个位置, 假如当前位置的\(sum\)小于栈顶的\(sum\)则弹栈, 并把以栈顶为开头的最长合法子串的末尾设为当前位置的前一位. 弹栈结束后, 插入当前位置即可.
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = (int)1e6, INF = (int)2e9;
int n;
struct record
{
int L, R;
inline int operator <(const record &a) const {return R < a.R;}
}rec[N + 1];
struct segmentTree
{
int mn[N << 2];
inline segmentTree() {memset(mn, 127 ,sizeof(mn));}
void insert(int u, int L, int R, int pos)
{
mn[u] = min(mn[u], pos);
if(L == R) return;
if(pos <= L + R >> 1) insert(u << 1, L, L + R >> 1, pos);
else insert(u << 1 | 1, (L + R >> 1) + 1, R, pos);
}
inline void insert(int pos) {insert(1, 1, n, pos);}
int query(int u, int L, int R, int pos)
{
if(L >= pos) return mn[u];
int mid = L + R >> 1;
if(pos <= mid) return min(query(u << 1, L, L + R >> 1, pos), query(u << 1 | 1, (L + R >> 1) + 1, R, pos));
else return query(u << 1 | 1, (L + R >> 1) + 1, R, pos);
}
inline int query(int pos) {return query(1, 1, n, pos);}
}seg;
struct binaryIndexedTree
{
int mx[N + 1];
inline binaryIndexedTree() {memset(mx, -1, sizeof(mx));}
inline void insert(int pos, int x)
{
for(int i = pos; i <= n; i += i & - i)
mx[i] = max(mx[i], x);
}
inline int query(int pos)
{
int res = -1;
for(int i = pos; i; i -= i & - i) res = max(res, mx[i]);
return res;
}
}BIT;
int main()
{
#ifndef ONLINE_JUDGE
freopen("bar.in", "r", stdin);
freopen("bar.out", "w", stdout);
#endif
scanf("%d\n", &n);
static int a[N + 1];
for (int i = 1; i <= n; ++ i) a[i] = getchar() == 'p' ? 1 : -1;
static int stk[N + 1], sum[N + 2];
int tp = 0; stk[tp ++] = 0;
sum[0] = 0; for (int i = 1; i <= n; ++ i) sum[i] = sum[i - 1] + a[i]; sum[n + 1] = - INF;
static int f[N + 1];
for (int i = 1; i <= n + 1; ++ i)
{
while (tp && sum[i] < sum[stk[tp - 1]]) f[stk[tp - 1] + 1] = i - 1, -- tp;
stk[tp ++] = i;
}
for(int i = 1; i <= n; ++ i) rec[i].L = i, rec[i].R = f[i];
tp = 0; stk[tp ++] = n + 1;
sum[n + 1] = 0; for(int i = n; i; -- i) sum[i] = sum[i + 1] + a[i]; sum[0] = - INF;
for(int i = n; ~ i; -- i)
{
while(tp && sum[i] < sum[stk[tp - 1]]) f[stk[tp - 1] - 1] = i + 1, -- tp;
stk[tp ++] = i;
}
sort(rec, rec + n + 1);
int ans = 0;
/* for(int i = 1, p = 1; i <= n; ++ i)
{
for(; rec[p].R <= i; ++ p) seg.insert(rec[p].L);
int cur = seg.query(f[i]);
if(cur > i) continue;
else ans = max(ans, i - cur + 1);
} */
for(int i = 1, p = 1; i <= n; ++ i)
{
for(; p <= rec[i].R; ++ p) BIT.insert(f[p], p);
int cur = BIT.query(rec[i].L);
if(cur >= rec[i].L) ans = max(ans, cur - rec[i].L + 1);
}
printf("%d\n", ans);
}
2016集训测试赛(二十六)Problem A: bar的更多相关文章
- 2016北京集训测试赛(十六)Problem C: ball
Solution 这是一道好题. 考虑球体的体积是怎么计算的: 我们令\(f_k(r)\)表示\(x\)维单位球的体积, 则 \[ f_k(1) = \int_{-1}^1 f_{k - 1}(\sq ...
- 2016北京集训测试赛(十六)Problem B: river
Solution 这题实际上并不是构造题, 而是一道网络流. 我们考虑题目要求的一条路径应该是什么样子的: 它是一个环, 并且满足每个点有且仅有一条出边, 一条入边, 同时这两条边的权值还必须不一样. ...
- 2016北京集训测试赛(十六)Problem A: 任务安排
Solution 这道题告诉我们, 不能看着数据范围来推测正解的时间复杂度. 事实证明, 只要常数足够小, \(5 \times 10^6\)也是可以跑\(O(n \log n)\)算法的!!! 这道 ...
- 【2016北京集训测试赛(十六)】 River (最大流)
Description Special Judge Hint 注意是全程不能经过两个相同的景点,并且一天的开始和结束不能用同样的交通方式. 题解 题目大意:给定两组点,每组有$n$个点,有若干条跨组 ...
- 2016集训测试赛(十九)Problem C: 无聊的字符串
Solution 傻X题 我的方法是建立后缀后缀树, 然后在DFS序列上直接二分即可. 关键在于如何得到后缀树上每个字符对应的字节点: 我们要在后缀自动机上记录每个点在后缀树上对应的字母. 考虑如何实 ...
- 2016集训测试赛(十九)Problem A: 24点大师
Solution 这到题目有意思. 首先题目描述给我们提供了一种非常管用的模型. 按照题目的方法, 我们可以轻松用暴力解决20+的问题; 关键在于如何构造更大的情况: 我们发现 \[ [(n + n) ...
- 2016集训测试赛(十八)Problem C: 集串雷 既分数规划学习笔记
Solution 分数规划经典题. 话说我怎么老是忘记分数规划怎么做呀... 所以这里就大概写一下分数规划咯: 分数规划解决的是这样一类问题: 有\(a_1, a_2 ... a_n\)和\(b_1, ...
- 2016北京集训测试赛(十)Problem A: azelso
Solution 我们把遇到一个旗子或者是遇到一个敌人称为一个事件. 这一题思路的巧妙之处在于我们要用\(f[i]\)表示从\(i\)这个事件一直走到终点这段路程中, \(i\)到\(i + 1\)这 ...
- 2018.7.31 Noip2018模拟测试赛(十六)
日期: 七月最后一天 总分: 300分 难度: 提高 ~ 省选 得分: 30分(少的可怜) 我太弱了:(题目目录) T1:Mushroom追妹纸 T2:抵制克苏恩 T3:美味 失分分析:(QA ...
随机推荐
- xposed的基本使用
一.原理 Android运行的核心是zygote进程,所有app的进程都是通过zygote fork出来的.通过替换system/bin/下面的app_process等文件,相当于替换了zygote进 ...
- bootstrap button
样式修改 .sign-button, .sign-button:hover, .sign-button:focus, .sign-button:active, .sign-button:visited ...
- 强命名实用程序(SN.exe)
不要在普通的命令行窗口中编译,请先打开C:\ProgramData\Microsoft\Windows\Start Menu\Programs\Microsoft Visual Studio 2010 ...
- C语言编程题001
有一颗树,一年两个生长周期,春天它长高一倍,夏天长高1m,问N个周期后树有多高?假设从春天开始树高为1m,第0个周期树高为1m. 要求:1.可以同时输入多个生长周期 如:3//表示下面有几个生长周期 ...
- 如何将Linux rm命令删除的文件放入垃圾箱
因为rm命令删除的文件是不会放入垃圾箱的,所以无法恢复,下面小编就给大家介绍一种方法,通过替换Linux rm命令的方法,从而将rm命令删除的文件放入垃圾箱. 方法: 1. 在/home/userna ...
- Windows下Git多账号ssh-key(复制自己用)
Windows下Git多账号配置,同一电脑多个ssh-key的管理 这一篇文章是对上一篇文章<Git-TortoiseGit完整配置流程>的拓展,所以需要对上一篇文章有所了解,当然直接往下 ...
- 用最优方法从LinkedList列表中删除重复元素
用运行速度最优的方法从LinkedList列表里删除重复的元素,例如A->B->BB->B->C,返回A->B->BB->C. 考试的时候没完全想明白,考完又 ...
- GDOI2018 爆零记,Challenge Impossibility
蒟蒻的GDOI又双叒叕考挂啦...... Day 0 && Day -1 学校月考,貌似考的还不错? 然而考完试再坐船去中山实在是慢啊......晚上10点才到酒店 wifi差评... ...
- location.origin兼容
if (!window.location.origin) { window.location.origin = window.location.protocol + "//" + ...
- 挖煤(coal)
挖煤(coal) solution 我好弱,啥也想不到. 想了很久dp,这有后效性啊. 结果倒着做就可以了,因为后面的不会影响前面的. 考虑前面的影响后面:挖煤相当于让后面所有a[I]*(1+k%) ...