bmdiff snappy lzw gzip
https://github.com/google/snappy
Introduction
【速度第一,压缩比适宜】
【favors speed over compression ratio】
Snappy is a compression/decompression library. It does not aim for maximum compression, or compatibility with any other compression library; instead, it aims for very high speeds and reasonable compression. For instance, compared to the fastest mode of zlib, Snappy is an order of magnitude faster for most inputs, but the resulting compressed files are anywhere from 20% to 100% bigger. (For more information, see "Performance", below.)
Snappy has the following properties:
- Fast: Compression speeds at 250 MB/sec and beyond, with no assembler code. See "Performance" below.
- Stable: Over the last few years, Snappy has compressed and decompressed petabytes of data in Google's production environment. The Snappy bitstream format is stable and will not change between versions.
- Robust: The Snappy decompressor is designed not to crash in the face of corrupted or malicious input.
- Free and open source software: Snappy is licensed under a BSD-type license. For more information, see the included COPYING file.
Snappy has previously been called "Zippy" in some Google presentations and the like.
Performance
【64-bit】
【i7 c,d = 250,500 MB/sec】
【compress ratio plain text,HTML,JPEGs PNGS = 1.5-1.7x,2-4x,1.0x】
Snappy is intended to be fast. On a single core of a Core i7 processor in 64-bit mode, it compresses at about 250 MB/sec or more and decompresses at about 500 MB/sec or more. (These numbers are for the slowest inputs in our benchmark suite; others are much faster.) In our tests, Snappy usually is faster than algorithms in the same class (e.g. LZO, LZF, QuickLZ, etc.) while achieving comparable compression ratios.
Typical compression ratios (based on the benchmark suite) are about 1.5-1.7x for plain text, about 2-4x for HTML, and of course 1.0x for JPEGs, PNGs and other already-compressed data. Similar numbers for zlib in its fastest mode are 2.6-2.8x, 3-7x and 1.0x, respectively. More sophisticated algorithms are capable of achieving yet higher compression rates, although usually at the expense of speed. Of course, compression ratio will vary significantly with the input.
Although Snappy should be fairly portable, it is primarily optimized for 64-bit x86-compatible processors, and may run slower in other environments. In particular:
- Snappy uses 64-bit operations in several places to process more data at once than would otherwise be possible.
- Snappy assumes unaligned 32- and 64-bit loads and stores are cheap. On some platforms, these must be emulated with single-byte loads and stores, which is much slower.
- Snappy assumes little-endian throughout, and needs to byte-swap data in several places if running on a big-endian platform.
https://google.github.io/snappy/
bmdiff snappy lzw gzip的更多相关文章
- spark-sql性能测试
一,测试环境 1) 硬件环境完全相同: 包括:cpu/内存/网络/磁盘Io/机器数量等 2)软件环境: 相同数据 ...
- HBase应用开发回顾与总结系列之一:概述HBase设计规范
概述 笔者本人接触研究HBase也有半年之久了,虽说不上深入和系统,但至少算是比较沉迷.作为部门里大数据技术的探路者,笔者还要承担起技术传播的职责,所以在摸索研究的过程中总是不断地进行总结和测试, ...
- kafka概念
一.结构与概念解释 1.基础概念 topics: kafka通过topics维护各类信息. producer:发布消息到Kafka topic的进程. consumer:订阅kafka topic进程 ...
- 大数据查询——HBase读写设计与实践
导语:本文介绍的项目主要解决 check 和 opinion2 张历史数据表(历史数据是指当业务发生过程中的完整中间流程和结果数据)的在线查询.原实现基于 Oracle 提供存储查询服务,随着数据量的 ...
- Kafka生产者-向Kafka中写入数据
(1)生产者概览 (1)不同的应用场景对消息有不同的需求,即是否允许消息丢失.重复.延迟以及吞吐量的要求.不同场景对Kafka生产者的API使用和配置会有直接的影响. 例子1:信用卡事务处理系统,不允 ...
- Hbase中HMaster作用
HMaster在功能上主要负责Table表和HRegion的管理工作,具体包括: 1.管理用户对Table表的增.删.改.查操作: 2.管理HRegion服务器的负载均衡,调整HRegion分布: 3 ...
- Kafka 详解(三)------Producer生产者
在第一篇博客我们了解到一个kafka系统,通常是生产者Producer 将消息发送到 Broker,然后消费者 Consumer 去 Broker 获取,那么本篇博客我们来介绍什么是生产者Produc ...
- Kafka权威指南 读书笔记之(五)深入Kafka
集中讨论以下3 个有意思的话题 :• Kafka 如何进行复制:• Kafka 如何处理来自生产者和消费者的请求 :• Kafka 的存储细节,比如文件格式和索引. 集群成员关系 Kafka 使用 Z ...
- Kafka权威指南 读书笔记之(三)Kafka 生产者一一向 Kafka 写入数据
不管是把 Kafka 作为消息队列.消息总线还是数据存储平台来使用 ,总是需要有一个可以往 Kafka 写入数据的生产者和一个从 Kafka 读取数据的消费者,或者一个兼具两种角色的应用程序. 开发者 ...
随机推荐
- Codeforces 746G New Roads (构造)
G. New Roads ...
- Linux下设置开机启动
新配置了vsftpd 需要设置ftp开机启动,linux新手,还不是很熟悉linux下的操作! 查询后发现命令是: chkconfig vsftpd on chkconfig命令用于设置运行级别 ...
- 详解Webpack2的那些路径
Webpack2 中有很多涉及路径参数配置,若不知其所以然,很容易混淆出错.本文尽可能的汇集了 Webpack2 中设计路径的配置,力争深入浅出. context context 是 webpack ...
- IOS7开发~API变化
1.弃用 MKOverlayView 及其子类,使用类 MKOverlayRenderer: 2.弃用 Audio Toolbox framework 中的 AudioSession API,使用AV ...
- SuperIndicator 一个专用打造轮播的类库
Github地址:https://github.com/hejunlin2013/SuperIndicator,欢迎fork,star.著名Android-Universal-Image-Loader ...
- 安全 -- mysql参数化查询,防止Mysql注入
参数化查询(Parameterized Query 或 Parameterized Statement)是指在设计与数据库链接并访问数据时,在需要填入数值或数据的地方,使用参数(Parameter) ...
- 2016.6.21 将Eclipse中项目部署到tomcat下
新建的web项目,各种都配置好,选择run on server之后,发现运行失败,并不能访问需要的网址.而脱离eclipse,将生成的war文件直接放到tomcat的webapp下时,可以正常访问.所 ...
- Linux 指令篇:系统设置--set
功能说明:设置shell. 语 法:set [+-abCdefhHklmnpPtuvx] 补充说明:set指令能设置所使用shell的执行方式,可依照不同的需求来做设置. 参 数: -a 标示已修改 ...
- JAVA Eclipse创建Android程序界面不显示怎么办
一般是由于你创建的Android应用程序版本太高导致的,请设置4或以下版本,对于已有的项目,可以在属性-Android中修改目标生成的版本号 ...
- HDU 5301(Buildings-贪心构造)
Buildings Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) Tota ...