bmdiff snappy lzw gzip
https://github.com/google/snappy
Introduction
【速度第一,压缩比适宜】
【favors speed over compression ratio】
Snappy is a compression/decompression library. It does not aim for maximum compression, or compatibility with any other compression library; instead, it aims for very high speeds and reasonable compression. For instance, compared to the fastest mode of zlib, Snappy is an order of magnitude faster for most inputs, but the resulting compressed files are anywhere from 20% to 100% bigger. (For more information, see "Performance", below.)
Snappy has the following properties:
- Fast: Compression speeds at 250 MB/sec and beyond, with no assembler code. See "Performance" below.
- Stable: Over the last few years, Snappy has compressed and decompressed petabytes of data in Google's production environment. The Snappy bitstream format is stable and will not change between versions.
- Robust: The Snappy decompressor is designed not to crash in the face of corrupted or malicious input.
- Free and open source software: Snappy is licensed under a BSD-type license. For more information, see the included COPYING file.
Snappy has previously been called "Zippy" in some Google presentations and the like.
Performance
【64-bit】
【i7 c,d = 250,500 MB/sec】
【compress ratio plain text,HTML,JPEGs PNGS = 1.5-1.7x,2-4x,1.0x】
Snappy is intended to be fast. On a single core of a Core i7 processor in 64-bit mode, it compresses at about 250 MB/sec or more and decompresses at about 500 MB/sec or more. (These numbers are for the slowest inputs in our benchmark suite; others are much faster.) In our tests, Snappy usually is faster than algorithms in the same class (e.g. LZO, LZF, QuickLZ, etc.) while achieving comparable compression ratios.
Typical compression ratios (based on the benchmark suite) are about 1.5-1.7x for plain text, about 2-4x for HTML, and of course 1.0x for JPEGs, PNGs and other already-compressed data. Similar numbers for zlib in its fastest mode are 2.6-2.8x, 3-7x and 1.0x, respectively. More sophisticated algorithms are capable of achieving yet higher compression rates, although usually at the expense of speed. Of course, compression ratio will vary significantly with the input.
Although Snappy should be fairly portable, it is primarily optimized for 64-bit x86-compatible processors, and may run slower in other environments. In particular:
- Snappy uses 64-bit operations in several places to process more data at once than would otherwise be possible.
- Snappy assumes unaligned 32- and 64-bit loads and stores are cheap. On some platforms, these must be emulated with single-byte loads and stores, which is much slower.
- Snappy assumes little-endian throughout, and needs to byte-swap data in several places if running on a big-endian platform.
https://google.github.io/snappy/
bmdiff snappy lzw gzip的更多相关文章
- spark-sql性能测试
一,测试环境 1) 硬件环境完全相同: 包括:cpu/内存/网络/磁盘Io/机器数量等 2)软件环境: 相同数据 ...
- HBase应用开发回顾与总结系列之一:概述HBase设计规范
概述 笔者本人接触研究HBase也有半年之久了,虽说不上深入和系统,但至少算是比较沉迷.作为部门里大数据技术的探路者,笔者还要承担起技术传播的职责,所以在摸索研究的过程中总是不断地进行总结和测试, ...
- kafka概念
一.结构与概念解释 1.基础概念 topics: kafka通过topics维护各类信息. producer:发布消息到Kafka topic的进程. consumer:订阅kafka topic进程 ...
- 大数据查询——HBase读写设计与实践
导语:本文介绍的项目主要解决 check 和 opinion2 张历史数据表(历史数据是指当业务发生过程中的完整中间流程和结果数据)的在线查询.原实现基于 Oracle 提供存储查询服务,随着数据量的 ...
- Kafka生产者-向Kafka中写入数据
(1)生产者概览 (1)不同的应用场景对消息有不同的需求,即是否允许消息丢失.重复.延迟以及吞吐量的要求.不同场景对Kafka生产者的API使用和配置会有直接的影响. 例子1:信用卡事务处理系统,不允 ...
- Hbase中HMaster作用
HMaster在功能上主要负责Table表和HRegion的管理工作,具体包括: 1.管理用户对Table表的增.删.改.查操作: 2.管理HRegion服务器的负载均衡,调整HRegion分布: 3 ...
- Kafka 详解(三)------Producer生产者
在第一篇博客我们了解到一个kafka系统,通常是生产者Producer 将消息发送到 Broker,然后消费者 Consumer 去 Broker 获取,那么本篇博客我们来介绍什么是生产者Produc ...
- Kafka权威指南 读书笔记之(五)深入Kafka
集中讨论以下3 个有意思的话题 :• Kafka 如何进行复制:• Kafka 如何处理来自生产者和消费者的请求 :• Kafka 的存储细节,比如文件格式和索引. 集群成员关系 Kafka 使用 Z ...
- Kafka权威指南 读书笔记之(三)Kafka 生产者一一向 Kafka 写入数据
不管是把 Kafka 作为消息队列.消息总线还是数据存储平台来使用 ,总是需要有一个可以往 Kafka 写入数据的生产者和一个从 Kafka 读取数据的消费者,或者一个兼具两种角色的应用程序. 开发者 ...
随机推荐
- 洛谷——P2383 狗哥玩木棒
P2383 狗哥玩木棒 题目背景 狗哥又趁着语文课干些无聊的事了... 题目描述 现给出一些木棒长度,那么狗哥能否用给出的木棒(木棒全用完)组成一个正方形呢? 输入输出格式 输入格式: 输入文件中的第 ...
- SourceTree的基本使用-git on mac
SourceTree的基本使用 学习了:https://www.cnblogs.com/tian-xie/p/6264104.html
- 18. 使用模板【从零开始学Spring Boot】
转:http://blog.csdn.net/linxingliang/article/details/52017098 18.1 使用thymeleaf 整体步骤: (1) 在pom.x ...
- Web前端开发规范收集
在Web开发中,后端跟前端配合非常easy出现故障.这时我们就须要一些规则来约束前端任意的编写. CSS编程规范 1. 属性书写基本顺序 a. 先位置属性(position, to ...
- 【oracle ocp知识点一】
1.怎样确定数据库是否启动 su - oracle ps -ef |grep ora_|head -2 两种关系数据库是ora或者是自己主动存储管理的asm开头的, 查看进程能够知道数据库实例至少已经 ...
- Problem F
Time Limit : 2000/1000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other) Total Submission(s) ...
- bootcamp安装win7的详细步骤 (光盘安装)
bootcamp安装win7的详细步骤 首先是要您确定以下内容(1)您的Mac系统下是一个盘符,也就是“macintosh hd”一个磁盘.如果不是的话,首先您需要做的是备份您分区下面的资料,让磁 ...
- VueJS组件之间通过props交互及验证
props 是父组件用来传递数据的一个自定义属性.父组件的数据需要通过 props 把数据传给子组件,子组件需要显式地用 props 选项声明 "prop". 父组件通过props ...
- 在 Selenium 中让 PhantomJS 执行它的 API
from selenium import webdriver driver = webdriver.PhantomJS() script = "var page = this; page.o ...
- Android MarginLeft与MarginStart的差别
在写layout布局的时候,我们会发现有这样几个比較相似的属性: MarginStart MarginLeft MarginEnd MarginRight 这些属性的差别是什么? 依据ap ...