LightOJ1259 Goldbach`s Conjecture —— 素数表
题目链接:https://vjudge.net/problem/LightOJ-1259
| Time Limit: 2 second(s) | Memory Limit: 32 MB |
Goldbach's conjecture is one of the oldest unsolved problems in number theory and in all of mathematics. It states:
Every even integer, greater than 2, can be expressed as the sum of two primes [1].
Now your task is to check whether this conjecture holds for integers up to 107.
Input
Input starts with an integer T (≤ 300), denoting the number of test cases.
Each case starts with a line containing an integer n (4 ≤ n ≤ 107, n is even).
Output
For each case, print the case number and the number of ways you can express n as sum of two primes. To be more specific, we want to find the number of (a, b) where
1) Both a and b are prime
2) a + b = n
3) a ≤ b
Sample Input |
Output for Sample Input |
|
2 6 4 |
Case 1: 1 Case 2: 1 |
Note
- An integer is said to be prime, if it is divisible by exactly two different integers. First few primes are 2, 3, 5, 7, 11, 13, ...
题意:
哥德巴赫猜想:任何一个大于2的偶数,都可以是两个素数的和。给出一个偶数,判断有多少对素数的和是这个数。
题解:
由于n<=1e7,所以我们可以先筛选出1e7范围内的素数,然后再枚举每一个素数进行判断。
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = 1e7+; bool notprime[MAXN];
int prime[];
void getPrime()
{
memset(notprime, false, sizeof(notprime));
notprime[] = notprime[] = true;
prime[] = ;
for (int i = ; i<=MAXN; i++)
{
if (!notprime[i])prime[++prime[]] = i;
for (int j = ; j<=prime[ ]&& prime[j]<=MAXN/i; j++)
{
notprime[prime[j]*i] = true;
if (i%prime[j] == ) break;
}
}
} int main()
{
getPrime();
int T, n, kase = ;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
int ans = ;
for(int i = ; prime[i]<=n/; i++)
if(!notprime[n-prime[i]])
ans++;
printf("Case %d: %d\n", ++kase,ans);
}
return ;
}
LightOJ1259 Goldbach`s Conjecture —— 素数表的更多相关文章
- LightOJ-1259 Goldbach`s Conjecture 数论 素数筛
题目链接:https://cn.vjudge.net/problem/LightOJ-1259 题意 给一个整数n,问有多少对素数a和b,使得a+b=n 思路 素数筛 埃氏筛O(nloglogn),这 ...
- LightOJ1259 Goldbach`s Conjecture
题面 T组询问,每组询问是一个偶数n 验证哥德巴赫猜想 回答n=a+b 且a,b(a<=b)是质数的方案个数 Input Input starts with an integer T (≤ 30 ...
- 【LightOJ1259】Goldbach`s Conjecture(数论)
[LightOJ1259]Goldbach`s Conjecture(数论) 题面 Vjudge T组询问,每组询问是一个偶数n 验证哥德巴赫猜想 回答n=a+b 且a,b(a<=b)是质数的方 ...
- Goldbach`s Conjecture(素筛水题)题解
Goldbach`s Conjecture Goldbach's conjecture is one of the oldest unsolved problems in number theory ...
- LightOJ - 1259 - Goldbach`s Conjecture(整数分解定理)
链接: https://vjudge.net/problem/LightOJ-1259 题意: Goldbach's conjecture is one of the oldest unsolved ...
- UVa 543 - Goldbach's Conjecture
题目大意:给一个偶数,判断是否是两个素数的和. 先用sieve方法生成一个素数表,然后再进行判断即可. #include <cstdio> #include <vector> ...
- Goldbach's Conjecture
Goldbach's Conjecture Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I ...
- Poj 2262 / OpenJudge 2262 Goldbach's Conjecture
1.Link: http://poj.org/problem?id=2262 http://bailian.openjudge.cn/practice/2262 2.Content: Goldbach ...
- poj 2262 Goldbach's Conjecture(素数筛选法)
http://poj.org/problem?id=2262 Goldbach's Conjecture Time Limit: 1000MS Memory Limit: 65536K Total ...
随机推荐
- 四个很好的开源app项目
Open Source and the iOS App Store Today, we are open-sourcing 4 iOS apps: ThatInbox, an email client ...
- 一天时间用OpenFire打造自己的IM聊天工具
Openfire采用Java开发,开源的实时协作(RTC)服务器基于XMPP(Jabber)协议.Openfire安装和使用都非常简单,并利用Web进行管理.单台服务器可支持上万并发用户. 好友界面 ...
- Gvim 和 Opencv编译
好奇看了一下Gvim编译器:在官网上也有介绍,github上有源码,安装在电脑上,感觉需求不大,记那些命令也太多了.然后编译opencv过程中cmake成功了,但是VS下编译报了很多错,准备不搞这些了 ...
- python3 查看已安装的模块
一.命令行下使用pydoc命令 在命令行下运行$ pydoc modules即可查看 二.在python交互解释器中使用help()查看 在交互式解释器中输入>>> help(&qu ...
- java数据库连接池简单实现
package cn.lmj.utils; import java.io.PrintWriter; import java.lang.reflect.InvocationHandler; import ...
- update tableView contenSize
NSIndexPath *messageIndexPath = [NSIndexPath indexPathForRow:afterRowCount-1 inSection:0]; [self. ...
- Android——滑动事件冲突解决
android中的事件类型分为按键事件和屏幕触摸事件,Touch事件是屏幕触摸事件的基础事件. android系统中的每个View的子类都具有下面三个与TouchEvent处理密切相关的方法: (1) ...
- Git命令学习总结(-)
入职的第一天,让git命令直接给难住了,汗!使用习惯可视化的工具对于命令行早就忘记的一干二净.还好,回家自己练习一下,总会没有错的.git就不做简介了,版本管理除了svn就是git了,其他的都无所谓了 ...
- OpenJDK 源码阅读之 LinkedList
概要 类继承关系 java.lang.Object java.util.AbstractCollection<E> java.util.AbstractList<E> java ...
- vs2010音频文件压缩 调用lame_enc.dll将WAV格式转换成MP3
/* //My_lame.h */ #pragma once#include "stdafx.h"#include <windows.h>#include <st ...