LightOJ1259 Goldbach`s Conjecture —— 素数表
题目链接:https://vjudge.net/problem/LightOJ-1259
| Time Limit: 2 second(s) | Memory Limit: 32 MB |
Goldbach's conjecture is one of the oldest unsolved problems in number theory and in all of mathematics. It states:
Every even integer, greater than 2, can be expressed as the sum of two primes [1].
Now your task is to check whether this conjecture holds for integers up to 107.
Input
Input starts with an integer T (≤ 300), denoting the number of test cases.
Each case starts with a line containing an integer n (4 ≤ n ≤ 107, n is even).
Output
For each case, print the case number and the number of ways you can express n as sum of two primes. To be more specific, we want to find the number of (a, b) where
1) Both a and b are prime
2) a + b = n
3) a ≤ b
Sample Input |
Output for Sample Input |
|
2 6 4 |
Case 1: 1 Case 2: 1 |
Note
- An integer is said to be prime, if it is divisible by exactly two different integers. First few primes are 2, 3, 5, 7, 11, 13, ...
题意:
哥德巴赫猜想:任何一个大于2的偶数,都可以是两个素数的和。给出一个偶数,判断有多少对素数的和是这个数。
题解:
由于n<=1e7,所以我们可以先筛选出1e7范围内的素数,然后再枚举每一个素数进行判断。
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = 1e7+; bool notprime[MAXN];
int prime[];
void getPrime()
{
memset(notprime, false, sizeof(notprime));
notprime[] = notprime[] = true;
prime[] = ;
for (int i = ; i<=MAXN; i++)
{
if (!notprime[i])prime[++prime[]] = i;
for (int j = ; j<=prime[ ]&& prime[j]<=MAXN/i; j++)
{
notprime[prime[j]*i] = true;
if (i%prime[j] == ) break;
}
}
} int main()
{
getPrime();
int T, n, kase = ;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
int ans = ;
for(int i = ; prime[i]<=n/; i++)
if(!notprime[n-prime[i]])
ans++;
printf("Case %d: %d\n", ++kase,ans);
}
return ;
}
LightOJ1259 Goldbach`s Conjecture —— 素数表的更多相关文章
- LightOJ-1259 Goldbach`s Conjecture 数论 素数筛
题目链接:https://cn.vjudge.net/problem/LightOJ-1259 题意 给一个整数n,问有多少对素数a和b,使得a+b=n 思路 素数筛 埃氏筛O(nloglogn),这 ...
- LightOJ1259 Goldbach`s Conjecture
题面 T组询问,每组询问是一个偶数n 验证哥德巴赫猜想 回答n=a+b 且a,b(a<=b)是质数的方案个数 Input Input starts with an integer T (≤ 30 ...
- 【LightOJ1259】Goldbach`s Conjecture(数论)
[LightOJ1259]Goldbach`s Conjecture(数论) 题面 Vjudge T组询问,每组询问是一个偶数n 验证哥德巴赫猜想 回答n=a+b 且a,b(a<=b)是质数的方 ...
- Goldbach`s Conjecture(素筛水题)题解
Goldbach`s Conjecture Goldbach's conjecture is one of the oldest unsolved problems in number theory ...
- LightOJ - 1259 - Goldbach`s Conjecture(整数分解定理)
链接: https://vjudge.net/problem/LightOJ-1259 题意: Goldbach's conjecture is one of the oldest unsolved ...
- UVa 543 - Goldbach's Conjecture
题目大意:给一个偶数,判断是否是两个素数的和. 先用sieve方法生成一个素数表,然后再进行判断即可. #include <cstdio> #include <vector> ...
- Goldbach's Conjecture
Goldbach's Conjecture Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I ...
- Poj 2262 / OpenJudge 2262 Goldbach's Conjecture
1.Link: http://poj.org/problem?id=2262 http://bailian.openjudge.cn/practice/2262 2.Content: Goldbach ...
- poj 2262 Goldbach's Conjecture(素数筛选法)
http://poj.org/problem?id=2262 Goldbach's Conjecture Time Limit: 1000MS Memory Limit: 65536K Total ...
随机推荐
- 思科CCIE全新升级,SDN/SD-WAN成重头戏!
CCIE,全称Cisco Certified Internetwork Expert,是美国Cisco公司于1993年开始推出的专家级认证考试.被全球公认为IT业最权威的认证,是全球Internetw ...
- Ural 1780 Gray Code 乱搞暴力
原题链接:http://acm.timus.ru/problem.aspx?space=1&num=1780 1780. Gray Code Time limit: 0.5 secondMem ...
- [Bzoj4942][Noi2017]整数(线段树)
4942: [Noi2017]整数 Time Limit: 50 Sec Memory Limit: 512 MBSubmit: 363 Solved: 237[Submit][Status][D ...
- 朱子奇- 精算师,Tailorwoods创始人 | 到「在行」来约见我
朱子奇- 精算师,Tailorwoods创始人 | 到「在行」来约见我 Tailorwoods
- javascript 函数初探 (六)--- 闭包初探#3
相关定义与闭包: 实际上,每个函数都可以被认为是一个闭包.因为每个函数都在其所在域(即该函数的作用域)中维护了某种联系. 但在大多数的时候,该作用于在函数体内被执行完之后就被自行销毁了.---除非发生 ...
- Cesium之3D拉伸显示行政区
转自原文 Cesium之3D拉伸显示行政区含GeoJSON数据生成过程GDAL的ogr2ogr Cesiumjs 是一套javascript库,用来渲染3D地球,2D区域地图,和多种GIS要素.不需要 ...
- ios 6.0模拟器页面调出pop窗口消失后无法使用键盘
ios 6模拟器上,点击事件调用出pop窗口,这个窗口新创建了window,在pop窗口消失的函数中使用了makeKeyWindow,这个是将要显示的window放到最前端.发现 屏蔽这个方法后可以了 ...
- 在Dev GridControl中添加颜色可变的ProgressBar z
在使用DevExpress,GridControl自带的ProgressBarControl的时候 由于无法通过BackColor/ForeColor来改变进度条的颜色所以很多特效是实现不了的.如下面 ...
- const mutable
在C++中,由const修饰的成员函数的函数体内部,是不能够对成员变量进行修改的.这个特性被用来保证某些成员函数在实现过程中,避免由于程序员大意而对数据进行了错误的修改:同时也说明此成员函数是非修改性 ...
- POJ2503字典树
此代码原始出处:http://blog.csdn.net/cnyali/article/details/47367403 #include<stdio.h> #include<str ...