题目链接:https://vjudge.net/problem/LightOJ-1259

1259 - Goldbach`s Conjecture
Time Limit: 2 second(s) Memory Limit: 32 MB

Goldbach's conjecture is one of the oldest unsolved problems in number theory and in all of mathematics. It states:

Every even integer, greater than 2, can be expressed as the sum of two primes [1].

Now your task is to check whether this conjecture holds for integers up to 107.

Input

Input starts with an integer T (≤ 300), denoting the number of test cases.

Each case starts with a line containing an integer n (4 ≤ n ≤ 107, n is even).

Output

For each case, print the case number and the number of ways you can express n as sum of two primes. To be more specific, we want to find the number of (a, b) where

1)      Both a and b are prime

2)      a + b = n

3)      a ≤ b

Sample Input

Output for Sample Input

2

6

4

Case 1: 1

Case 2: 1

Note

  1. An integer is said to be prime, if it is divisible by exactly two different integers. First few primes are 2, 3, 5, 7, 11, 13, ...

题意:

哥德巴赫猜想:任何一个大于2的偶数,都可以是两个素数的和。给出一个偶数,判断有多少对素数的和是这个数。

题解:

由于n<=1e7,所以我们可以先筛选出1e7范围内的素数,然后再枚举每一个素数进行判断。

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = 1e7+; bool notprime[MAXN];
int prime[];
void getPrime()
{
memset(notprime, false, sizeof(notprime));
notprime[] = notprime[] = true;
prime[] = ;
for (int i = ; i<=MAXN; i++)
{
if (!notprime[i])prime[++prime[]] = i;
for (int j = ; j<=prime[ ]&& prime[j]<=MAXN/i; j++)
{
notprime[prime[j]*i] = true;
if (i%prime[j] == ) break;
}
}
} int main()
{
getPrime();
int T, n, kase = ;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
int ans = ;
for(int i = ; prime[i]<=n/; i++)
if(!notprime[n-prime[i]])
ans++;
printf("Case %d: %d\n", ++kase,ans);
}
return ;
}

LightOJ1259 Goldbach`s Conjecture —— 素数表的更多相关文章

  1. LightOJ-1259 Goldbach`s Conjecture 数论 素数筛

    题目链接:https://cn.vjudge.net/problem/LightOJ-1259 题意 给一个整数n,问有多少对素数a和b,使得a+b=n 思路 素数筛 埃氏筛O(nloglogn),这 ...

  2. LightOJ1259 Goldbach`s Conjecture

    题面 T组询问,每组询问是一个偶数n 验证哥德巴赫猜想 回答n=a+b 且a,b(a<=b)是质数的方案个数 Input Input starts with an integer T (≤ 30 ...

  3. 【LightOJ1259】Goldbach`s Conjecture(数论)

    [LightOJ1259]Goldbach`s Conjecture(数论) 题面 Vjudge T组询问,每组询问是一个偶数n 验证哥德巴赫猜想 回答n=a+b 且a,b(a<=b)是质数的方 ...

  4. Goldbach`s Conjecture(素筛水题)题解

    Goldbach`s Conjecture Goldbach's conjecture is one of the oldest unsolved problems in number theory ...

  5. LightOJ - 1259 - Goldbach`s Conjecture(整数分解定理)

    链接: https://vjudge.net/problem/LightOJ-1259 题意: Goldbach's conjecture is one of the oldest unsolved ...

  6. UVa 543 - Goldbach's Conjecture

    题目大意:给一个偶数,判断是否是两个素数的和. 先用sieve方法生成一个素数表,然后再进行判断即可. #include <cstdio> #include <vector> ...

  7. Goldbach's Conjecture

     Goldbach's Conjecture Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I ...

  8. Poj 2262 / OpenJudge 2262 Goldbach's Conjecture

    1.Link: http://poj.org/problem?id=2262 http://bailian.openjudge.cn/practice/2262 2.Content: Goldbach ...

  9. poj 2262 Goldbach's Conjecture(素数筛选法)

    http://poj.org/problem?id=2262 Goldbach's Conjecture Time Limit: 1000MS   Memory Limit: 65536K Total ...

随机推荐

  1. Arduino可穿戴教程保存源文件与打开已经存在的源文件

    Arduino可穿戴教程保存源文件与打开已经存在的源文件 Arduino IDE保存源文件 保存源文件可以通过“文件”菜单的“保存”或者快捷键Ctrl+S完成,如图2.28所示.   图2.28  保 ...

  2. String,StringBuffer,StringBuilder源码分析

    1.类结构 String Diagrams StringBuffer Diagrams StringBuilder Diagrams 通过以上Diagrams可以看出,String,StringBuf ...

  3. Spring Boot中实现异步调用之@Async

    一.什么是异步调用 “异步调用”对应的是“同步调用”,同步调用指程序按照定义顺序依次执行,每一行程序都必须等待上一行程序执行完成之后才能执行:异步调用指程序在顺序执行时,不等待异步调用 的语句返回结果 ...

  4. C++ Primer 学习笔记_6_标准库类型 -- 命名空间using与string类型

     标准库类型(一) --命名空间using与string类型 引: 标准库类型是语言组成部分中更主要的哪些数据类型(如:数组.指针)的抽象! C++标准库定义的是高级的抽象数据类型: 1.高级:由 ...

  5. 计算机的一些经典书籍CS经典书单

    c++: <c++程序设计> <c++primer> <effective c++> <more effective c++> <深入探索c++对 ...

  6. Linux基础(2)- 用户、群组和权限

    一.用户.群组和权限 1)  新建用户natasha,uid为1100,gid为555,备注信息为“master” 2)  修改natasha用户的家目录为/Natasha 3)  查看用户信息配置文 ...

  7. ffmpeg 错误 real-time buffer [USB2.0 Camera] [video input] too full or near too full (101% of size: 30412)

    利用ffmpeg 获取USB 或者本地摄像机视频,并将视频编码后保存本地文件或者发送到远端流媒体服务经常会出现 类似real-time buffer [USB2.0 Camera] [video in ...

  8. php实现双色球算法

    function DoubleBall(){ $sysBlueball = mt_rand(1,16); $sysRedball = array(1,2,3,4,5,6,7,8,9,10,11,12, ...

  9. MYSQL主从不同步延迟原理分析及解决方案

    1. MySQL数据库主从同步延迟原理.要说延时原理,得从mysql的数据库主从复制原理说起,mysql的主从复制都是单线程的操作,主库对所有DDL和DML产生binlog,binlog是顺序写,所以 ...

  10. Class doesn&#39;t implement Cloneable之怪象

    1. 报错: -20 ::): threadid=: thread exiting with uncaught exception (group=0x4001d400) -20 ::): FATAL  ...