动态规划:最长上升子序列之基础(经典算法 n^2)
解题心得:
1、注意动态转移方程式,d[j]+1>d[i]>?d[i]=d[j]+1:d[i]
2、动态规划的基本思想:将大的问题化为小的,再逐步扩大得到答案,但是小问题的基本性质要和大的问题相同。
3、这是动态规划的经典方程式,但是耗时较多,在数据较大的时候会出现超时的情况。
题目:
1180: 最长上升子序列之基础
Time Limit: 1000 MS Memory Limit: 65536 KB
Total Submit: 166 Accepted: 79 Page View: 551
Submit Status Discuss
Description
给出一个由n个数组成的序列x[1..n],找出它的最长单调上升子序列的长度。即找出最大的长度m和a1,
a2……,am,使得 a1 < a2 < … … < am 且 x[a1] < x[a2] < … … < x[am]。
Input
先输入一个整数t(t<=200),代表测试组数。
每组数据先输入一个N,代表有N个数(1<=N<=1000).
输入N个正整数,a1,a2,a3…..an(0<=ai<=100000).
Output
每组输出一个整数,代表最长的长度。
Sample Input
1
7
1 7 3 5 9 4 4
8
Sample Output
4
#include<stdio.h>
int main()
{
int t,n,num[1010];
int len; //记录最长的子序列
int d[1010]; //记录从1开始到n的子序列长度
scanf("%d",&t);
while(t--)
{
len = 0;
scanf("%d",&n);
for(int i=0;i<n;i++)
{
scanf("%d",&num[i]);
}
for(int i=0;i<n;i++)
{
d[i] = 1;
for(int j=0;j<i;j++)
{
if(num[i] > num[j] && d[j] + 1 > d[i])//关键:判断上升则第i个肯定比第i之前的更大,d【i】则为之前的+1中的最大的那个
{
d[i] = d[j] +1;
if(d[i] > len)
len = d[i];
}
}
}
printf("%d\n",len);
}
}
动态规划:最长上升子序列之基础(经典算法 n^2)的更多相关文章
- LCS(最长公共子序列)动规算法正确性证明
今天在看代码源文件求diff的原理的时候看到了LCS算法.这个算法应该不陌生,动规的经典算法.具体算法做啥了我就不说了,不知道的可以直接看<算法导论>动态规划那一章.既然看到了就想回忆下, ...
- 浅谈最长上升子序列(O(n*logn)算法)
今天GM讲了最长上升子序列的logn*n算法,但没讲思路... 我看了篇博客,发现-- 说的有道理!!! 首先,举例子: a[7]={1,2,4,3,6,7,5}(假设以1开头) 很明显,LIS=5: ...
- 51nod 1006 最长公共子序列Lcs(经典动态规划)
传送门 Description 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). 比如两个串为: abcicba abdkscab ab是两个串的子序列,abc也是 ...
- 动态规划---最长上升子序列问题(O(nlogn),O(n^2))
LIS(Longest Increasing Subsequence)最长上升子序列 或者 最长不下降子序列.很基础的题目,有两种算法,复杂度分别为O(n*logn)和O(n^2) . ******* ...
- 动态规划 - 最长公共子序列(LCS)
最长公共子序列也是动态规划中的一个经典问题. 有两个字符串 S1 和 S2,求一个最长公共子串,即求字符串 S3,它同时为 S1 和 S2 的子串,且要求它的长度最长,并确定这个长度.这个问题被我们称 ...
- 动态规划 - 最长递增子序列(LIS)
最长递增子序列是动态规划中经典的问题,详细如下: 在一个已知的序列{a1,a2,...,an}中,取出若干数组组成新的序列{ai1,ai2,...,aim},其中下标i1,i2,...,im保持递增, ...
- 动态规划 最长公共子序列 LCS,最长单独递增子序列,最长公共子串
LCS:给出两个序列S1和S2,求出的这两个序列的最大公共部分S3就是就是S1和S2的最长公共子序列了.公共部分 必须是以相同的顺序出现,但是不必要是连续的. 选出最长公共子序列.对于长度为n的序列, ...
- 动态规划----最长递增子序列问题(LIS)
题目: 输出最长递增子序列的长度,如输入 4 2 3 1 5 6,输出 4 (因为 2 3 5 6组成了最长递增子序列). 暴力破解法:这种方法很简单,两层for循环搞定,时间复杂度是O(N2). 动 ...
- 算法之动态规划(最长递增子序列——LIS)
最长递增子序列是动态规划中最经典的问题之一,我们从讨论这个问题开始,循序渐进的了解动态规划的相关知识要点. 在一个已知的序列 {a1, a 2,...an}中,取出若干数组成新的序列{ai1, ai ...
随机推荐
- Android 中文 API (101) —— AsyncTask
一.结构 public abstract class AsyncTask extends Object java.lang.Object android.os.AsyncTask<Params, ...
- flask --db-Column属性
db.Column 中其余的参数指定属性的配置选项. 选项名 说 明 primary_key 如果设为 True,这列就是表的主键 unique 如果设为 True,这列不允许出现重复的值 index ...
- Ubuntu上安装Samba服务器实现家庭共享
如何在Ubuntu上安装Samba服务器 大多数Linux发行版都包含Samba. 要在Ubuntu上安装Samba,只需运行: sudo apt install samba 要检查您的Samba版本 ...
- AngularJS(九):路由
本文也同步发表在我的公众号“我的天空” AngularJS路由 AngularJS路由可以让我们通过不同的URL访问不同页面(似乎是废话),其价值主要体现在单页面的web应用中(single page ...
- 更改placeholder样式
/*不要将选择器进行组合*/ /* IE 10-11 */ :-ms-input-placeholder { color: #aaa; } /* webkit */ ::-webkit-input-p ...
- python语法之一
Python 标识符 在 Python 里,标识符由字母.数字.下划线组成. 在 Python 中,所有标识符可以包括英文.数字以及下划线(_),但不能以数字开头. Python 中的标识符是区分大小 ...
- xp_delete_files不起作用解决方法
xp_delete_file用来删除数据库的备份文件和维护计划文本报告.示例: ,N'D:\Backup\Diff',N'bak',N'2019-05-29T10:03:41' 第一个参数表示文件类型 ...
- LeetCode Best Time to Buy and Sell Stock II (简单题)
题意: 股票买卖第2题.给出每天的股票价格,每次最多买一股,可以多次操作,但是每次在买之前必须保证身上无股票.问最大的利润? 思路: 每天的股票价格可以看成是一条曲线,能卖掉就卖掉,那么肯定是在上升的 ...
- pat甲级1012
1012 The Best Rank (25)(25 分) To evaluate the performance of our first year CS majored students, we ...
- iOS 7系列译文:认识 TextKit
OS 7:终于来了,TextKit. 功能 所以咱们到了.iOS7 带着 TextKit 登陆了.咱们看看它可以做什么!深入之前,我还想提一下,严格来说,这些事情中的大部分以前都可以做.如果你 ...