PythonCookBook笔记——数据编码和处理
数据编码和处理
主要涉及用Python处理不同方式编码的数据,如CSV、JSON、XML和二进制包装记录。
读写CSV数据
使用csv库。
import csv
with open('stocks.csv') as f:
f_csv = csv.reader(f)
headers = next(f_csv)
for row in f_csv:
# Process row
...
# row是每行的列表,其中的值通过下标访问
import csv
with open('stocks.csv') as f:
f_csv = csv.DictReader(f)
for row in f_csv:
# process row
...
# 通过字典方式读取,row是一个字典,可通过`row[name]`访问对应值
写入时要先创建一个writer对象。
headers = ['Symbol','Price','Date','Time','Change','Volume']
rows = [('AA', 39.48, '6/11/2007', '9:36am', -0.18, 181800),
('AIG', 71.38, '6/11/2007', '9:36am', -0.15, 195500),
('AXP', 62.58, '6/11/2007', '9:36am', -0.46, 935000),
]
with open('stocks.csv','w') as f:
f_csv = csv.writer(f)
f_csv.writerow(headers)
f_csv.writerows(rows)
对于字典型数据写入,创建DictWriter对象。
headers = ['Symbol', 'Price', 'Date', 'Time', 'Change', 'Volume']
rows = [{'Symbol':'AA', 'Price':39.48, 'Date':'6/11/2007',
'Time':'9:36am', 'Change':-0.18, 'Volume':181800},
{'Symbol':'AIG', 'Price': 71.38, 'Date':'6/11/2007',
'Time':'9:36am', 'Change':-0.15, 'Volume': 195500},
{'Symbol':'AXP', 'Price': 62.58, 'Date':'6/11/2007',
'Time':'9:36am', 'Change':-0.46, 'Volume': 935000},
]
with open('stocks.csv','w') as f:
f_csv = csv.DictWriter(f, headers)
f_csv.writeheader()
f_csv.writerows(rows)
读写JSON数据
json模块提供了很简单的方式来编解码JSON数据。
import json
data = {
'name' : 'ACME',
'shares' : 100,
'price' : 542.23
}
json_str = json.dumps(data)
data = json.loads(json_str)
JSON编码支持基本数据类型None、bool、int、float、str以及包含这些类型的list、tuple和dict,对于dict的keys必须是字串类型,并且应该只编码list和dict。
JSON编码对于Python字典,除了True变成true,False变成false,None变成null,没有区别了。
如果要让JSON数据更美观打印出来,使用pprint.pprint()方法。
与关系型数据库进行交互
最好使用列表元组格式数据。
编解码Base64数据
base64模块有两个函数b64encode()和b64decode()可以完成编解码。
>>> import base64
>>> s = b'hello'
>>> a = base64.b64encode(s)
>>> a
b'aGVsbG8='
>>> base64.b64decode(a)
b'hello'
>>>
base64只能处理字节字串或数组,如果要处理文本字串,需要增加一个编解码到字节码的过程。
读写二进制数组数据
使用struct模块处理二进制数据。
from struct import Struct
def write_records(records, format, f):
'''
Write a sequence of tuples to a binary file of structures.
'''
record_struct = Struct(format)
for r in records:
f.write(record_struct.pack(*r))
# Example
if __name__ == '__main__':
records = [ (1, 2.3, 4.5),
(6, 7.8, 9.0),
(12, 13.4, 56.7) ]
with open('data.b', 'wb') as f:
write_records(records, '<idd', f)
以块形式读取文件。
from struct import Struct
def read_records(format, f):
record_struct = Struct(format)
chunks = iter(lambda: f.read(record_struct.size), b'')
return (record_struct.unpack(chunk) for chunk in chunks)
# Example
if __name__ == '__main__':
with open('data.b','rb') as f:
for rec in read_records('<idd', f):
# Process rec
...
一次性读取。
from struct import Struct
def unpack_records(format, data):
record_struct = Struct(format)
return (record_struct.unpack_from(data, offset)
for offset in range(0, len(data), record_struct.size))
# Example
if __name__ == '__main__':
with open('data.b', 'rb') as f:
data = f.read()
for rec in unpack_records('<idd', data):
# Process rec
...
结构体使用了一些结构码如i, d, f等,<表示字节顺序低位在前。
结构体的size属性包含结构的字节数,pack()和unpack()方法被用来打包和解包数据。
PythonCookBook笔记——数据编码和处理的更多相关文章
- PythonCookBook笔记——函数
函数 可接受任意数量参数的函数 接受任意数量的位置参数,使用*参数. 接受任意数量的关键字参数,使用**参数. 只接受关键字参数的函数 强制关键字参数放在某个参数后或直接单个之后. 给函数参数增加元信 ...
- PythonCookBook笔记——文件与IO
文件与IO 所有的程序都要处理输入与输出,涉及到文本.二进制文件.文件编码和对文件名.目录的操作. 读写文本数据 需要读写各种不同编码的文本数据,使用rt模式的open()函数. 该读写操作使用系统默 ...
- PythonCookBook笔记——迭代器与生成器
迭代器与生成器 迭代是Python最强大的功能之一,虽然看起来迭代只是处理序列中元素的一种方法,但不仅仅如此. 手动遍历迭代器 想遍历但不想使用for循环. 使用next()方法并在代码中捕获Stop ...
- PythonCookBook笔记——数字日期和时间
数字日期和时间 数字的四舍五入 用round函数,指定值和小数位数. >>> round(1.23, 1) 1.2 >>> round(1.27, 1) 1.3 & ...
- PythonCookBook笔记——字符串和文本
字符串和文本 使用多个分隔符分割字串 使用正则re.split()方法. >>> line = 'asdf fjdk; afed, fjek,asdf, foo' >>& ...
- PythonCookBook笔记——数据结构和算法
数据结构和算法 解包赋值 p = [1, 2, 3] a, b, c = p # _表示被丢弃的值 _, d, _ = p # 可变长解包 *a, b = p # 字串切割解包 line = 'nob ...
- python-cookbook读书笔记
今天开始读<python-cookbook>,书里有许多python优雅的写法,可以作为python的一本进阶书. 感谢译者.项目地址: https://github.com/yidao6 ...
- 射频识别技术漫谈(4)——数据编码【worldsing 笔记】
前已述及,射频识别技术中的调制方法一般使用调幅(AM),也就是将有用信号调制在载波的幅度上传送出去.这里的"有用信号"指用高低电平表示的数据"0"或" ...
- python3-cookbook笔记:第六章 数据编码和处理
python3-cookbook中每个小节以问题.解决方案和讨论三个部分探讨了Python3在某类问题中的最优解决方式,或者说是探讨Python3本身的数据结构.函数.类等特性在某类问题上如何更好地使 ...
随机推荐
- [USACO12MAR]花盆Flowerpot (单调队列,二分答案)
题目链接 Solution 转化一下,就是个单调队列. 可以发现就是一段区间 \([L,R]\) 使得其高度的极差不小于 \(d\) ,同时满足 \(R-L\) 最小. 然后可以考虑二分然后再 \(O ...
- Java面试题之ArrayList和LinkedList的区别
先看下类图: 相同点: 都实现了List接口和Collection: 不同点: 1.ArrayList是基于数组实现的:LinkedList是基于链表实现的: 2.ArrayList随机查询速度快:L ...
- djang中的request.user对象中的方法
print(dir(request.user)) ['__class__', '__delattr__', '__dict__', '__doc__', '__eq__', '__format__', ...
- Larevel5.1 打印SQL语句
Larevel5.1 打印SQL语句 为了方便调试,开发时需要打印sql. 方法一(全局打开): SQL打印默认是关闭的, 需要在/vendor/illuminate/database/Connect ...
- Day 18 函数之一
函数参数: 1.形参变量只有在被调用时才分配内存单元,在调用结束时,即刻释放所分配的内存单元.因此,形参只在函数内部有效.函数调用结束返回主调用函数后则不能再使用该形参变量 2.实参可以是常量.变量. ...
- hdu 3081 hdu 3277 hdu 3416 Marriage Match II III IV //最大流的灵活运用
3081 题意: n个女孩选择没有与自己吵过架的男孩有连边(自己的朋友也算,并查集处理),2分图,有些边,求有几种完美匹配(每次匹配每个点都不重复匹配) 我是建二分图后,每次增广一单位,(一次完美匹配 ...
- ML | SVM
What's xxx An SVM model is a representation of the examples as points in space, mapped so that the e ...
- 第3章 CentOS常用命令
一.CentOS常用命令 1.1 文件和目录 # cd /home 进入 '/home' 目录 # cd .. ...
- ie下li标签中span加float:right不换行问题解决方案
在IE6,IE7下使用标签时,在加入右浮动样式(float:right)后,会换行的bug解决方案:bug案例:新闻列表中,为使时间右对齐,加右浮动产生换行 <ul> <li> ...
- 布斯(Steve Jobs)在斯坦福大学的演讲稿,中英文对照版
2005年6月14日,苹果CEO史蒂夫·乔布斯(Steve Jobs)在他的母校斯坦福大学的毕业典礼发表了著名的演讲,关于这段演讲,你会看到N多人的推荐(比如同样喜欢在大学演讲的李开复先生).此前曾经 ...