题目链接  ECNU 2018 JAN Problem E

这题卡了双$log$的做法

令$gcd(a_{i}, a_{i+1}, a_{i+2}, ..., a_{j}) = calc(i, j)$

根据最大公约数的性质我们知道一个数和另一个数求$gcd$之后如果变小了,那么结果小于等于之前那个数的$1/2$

所以在考虑$a_{i}$的时候,

$calc(1, i), calc(2, i), calc(3, i), ..., calc(i, i)$这些数去重之后最多只有$logC$个不同的数

在考虑$a_{i}$之前把整个数列看成$logC$段,每一段先与$a_{i}$合并,然后再对每段分别求前缀和的最小值

(求出来的最小值是要被减去的)

分别更新答案即可。

注意特判$0$的情况,为了方便索性我把数列中的$0$都去掉了,出现$0$的话就把初始$ans$设成$0$

时间复杂度$O(nlogC), C = max(a_{i})$   (这里我忽略了$STL$自带的复杂度)

#include <bits/stdc++.h>

using namespace std;

#define rep(i, a, b)	for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i)
#define MP make_pair
#define fi first
#define se second typedef long long LL;
typedef pair <LL, LL> PII; const int N = 1e6 + 10;
const int A = 21; LL a[N], s[N], f[N][A];
LL ans;
vector <PII> v1, v2;
map <LL, LL> mp;
int n, m, flag;
int lg[N]; LL gcd(LL a, LL b){
return b == 0 ? a : gcd(b, a % b);
} void init(){
rep(i, 1, n + 1) f[i][0] = s[i - 1];
rep(j, 1, 20) rep(i, 1, n + 1)
if ((i + (1 << j) - 1) <= n + 1) f[i][j] = min(f[i][j - 1], f[i + (1 << (j - 1))][j - 1]);
} inline LL calc(int l, int r){
if (l > r) return 0;
int k = lg[r - l + 1];
return min(f[l][k], f[r - (1 << k) + 1][k]);
} inline void solve(int x, int y){
if (!mp.count(x)) mp[x] = y;
else mp[x] = min(mp[x], (LL)y);
} int main(){ lg[1] = 0; rep(i, 2, 1e6 + 1) lg[i] = lg[i >> 1] + 1; scanf("%d", &n);
m = 0;
flag = 1;
rep(i, 1, n){
LL x;
scanf("%lld", &x);
if (x) a[++m] = x;
else flag = 0;
}
n = m; ans = 1ll * flag * (-9e18);
rep(i, 1, n) s[i] = s[i - 1] + a[i];
init(); rep(i, 1, n){
LL cnt = abs(a[i]);
mp.clear();
for (auto u : v1) solve(gcd(u.fi, cnt), u.se);
solve(cnt, i);
v1.clear();
for (auto u : mp) v1.push_back(MP(u.fi, u.se));
int sz = v1.size(); for (int j = 0; j < sz; ++j){
PII u = v1[j];
int r;
if (j == sz - 1) r = i; else r = v1[j + 1].se - 1;
ans = max(ans, (s[i] - calc(u.se, r)) * u.fi);
} } printf("%lld\n", ans);
return 0;
}

  

ECNU 3480 没用的函数 (ST表预处理 + GCD性质)的更多相关文章

  1. BZOj 4540: [Hnoi2016]序列 [莫队 st表 预处理]

    4540: [Hnoi2016]序列 题意:询问区间所有子串的最小值的和 不强制在线当然上莫队啦 但是没想出来,因为不知道该维护当前区间的什么信息,维护前后缀最小值的话不好做 想到单调栈求一下,但是对 ...

  2. [bzoj4540][Hnoi2016][序列] (莫队算法+单调栈+st表)

    Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,…,ar-1,ar.若1≤l≤s≤t≤r≤n,则称a ...

  3. 数据结构进阶:ST表

    简介 ST 表是用于解决 可重复贡献问题 的数据结构. 什么是可重复贡献问题? ​ 可重复贡献问题 是指对于运算 \(\operatorname{opt}\) ,满足 \(x\operatorname ...

  4. HDU 5875 Function(ST表+二分)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5875 [题目大意] 给出一个数列,同时给出多个询问,每个询问给出一个区间,要求算出区间从左边开始不 ...

  5. Codeforces 873E Awards For Contestants ST表

    原文链接https://www.cnblogs.com/zhouzhendong/p/9255885.html 题目传送门 - CF873E 题意 现在要给 $n(n\leq 3000)$ 个学生颁奖 ...

  6. UOJ#219/BZOJ4650 [NOI2016]优秀的拆分 字符串 SA ST表

    原文链接http://www.cnblogs.com/zhouzhendong/p/9025092.html 题目传送门 - UOJ#219 (推荐,题面清晰) 题目传送门 - BZOJ4650 题意 ...

  7. bzoj3277 串 (后缀数组+二分答案+ST表)

    常见操作:先把所有串都连到一起,但中间加上一个特殊的符号(不能在原串中/出现过)作为分割 由于全部的子串就等于所有后缀的所有前缀,那我们对于每一个后缀,去求一个最长的前缀,来满足这个前缀在至少K个原串 ...

  8. POJ 3264 Balanced Lineup 【ST表 静态RMQ】

    传送门:http://poj.org/problem?id=3264 Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total S ...

  9. 【Codeforces Round #466】E. Cashback DP+ST表

    题意 给定$n$个数,将其划分成若干个连续的子序列,求最小价值,数组价值定义为,数组和减去$\lfloor \frac{k}{c} \rfloor$,$k$为数组长度,$c$为给定数 可以列得朴素方程 ...

随机推荐

  1. Paper Folding UVA - 177 模拟+思路+找规律

    题目:题目链接 思路:1到4是很容易写出来的,我们先考虑这四种情况的绘制顺序 1:ru 2:rulu 3:rululdlu 4:rululdluldrdldlu 不难发现,相较于前一行,每一次增加一倍 ...

  2. Codeforces Round #464 (Div. 2) E. Maximize!

    题目链接:http://codeforces.com/contest/939/problem/E E. Maximize! time limit per test3 seconds memory li ...

  3. HBase(0.94.5)的Compact和Split源码分析

    经过对比,0.94.5以后版本主要过程基本类似(有些新功能和细节增加) 一.       Compact 2.1.   Compact主要来源 来自四个方面:1.Memstoreflush时:2.HR ...

  4. Redis实现之字典

    字典 字典,又称为符号表(symbol table).关联数组(associative array)或映射(map),是一种用于保存键值对(key-value pair)的抽象数据结构.在字典中,一个 ...

  5. 【Python】函数参数类型及用法

     一.函数的参数类型 def hs(a1,a2,a3,...): ****statements 其中a1,a2,a3是函数的参数,函数的参数类型可分为:必须参数.默认参数.可变参数(不定长参数).关键 ...

  6. 自己搭建一个记笔记的环境记录(leanote)

    一直在找一个开源的记笔记的软件,偶然看到leanote.竟然还是开源的,还是国人开发的果断mark了.自己在电脑上搭建了一个挺好玩的.可以记录一些不给别人看的小秘密. 下面是步骤记录,当然可以到官网上 ...

  7. box-sizing重置

    html { /*-webkit-box-sizing: border-box; -moz-box-sizing: border-box;*/ box-sizing: border-box; } *, ...

  8. 【CCF】炉石传说 模拟

    #include<iostream> #include<cstdio> #include<string> #include<cstring> #incl ...

  9. kubernetes 之容器监控

    [root@manager ~]# git clone https://github.com/kubernetes/heapster.git [root@manager ~]# cd heapster ...

  10. JavaScript (JS)基础:DOM 浅析 (含数组Array、字符串String基本方法解析)

    ①文本对象document: 例如:document.getElementById()    只获取一个对象          document.getElementsByTagName()   获取 ...